Lead Phytoremediation Potential of Wild Type and Transgenic Tobacco Plants

Authors

  • Hatice DAGHAN Eskisehir Osmangazi University Faculty of Agriculture Department of Soil Science and Plant Nutrition, Eskisehir, Turkey
  • Veli UYGUR Applied Sciences University of Isparta, Faculty of Agricultural Sciences and Technologies, Department of Soil Science and Plant Nutrition, Isparta, Turkey
  • Abdullah EREN Mardin Artuklu University, Vocational School of Kiziltepe, Department of Plant and Animal Production, Mardin, Turkey

DOI:

https://doi.org/10.46291/ISPECJASvol5iss1pp168-182

Keywords:

Lead, Metallothionein, Nicotiana tabacum, Phytoremediation, Transgenic plant, Reduced glutathione

Abstract

Genetiği değiştirilmiş bitkiler, kurşunun (Pb) kökten yer üstü kısımlarına translokasyonunu geliştirmek için büyük bir potansiyele sahip olabilir. Transgenik olmayan ( Nicotiana tabacum L. cv. Petit Havana SR1) ve transgenik (p-cV-ChMTII GFP) tütün bitkileri tarafından Pb alımının sağlanması araştırmak için Çin hamsteri metalotiyonin II gezen bir kap deneyi yapıldı . Transgenik ve transgenik olmayan tütün bitkileri, 0, 1000, 2500, 5000 mg Pb kg- 1 ile Pb (NO 3 ) 2 olarak işlenmiş topraklarda yetiştirildi. Kelimede bir büyüme bölümünde 6 hafta boyunca çiçeklenme aşamasına kadar.Bitkilerin büyümesi, klorofil içeriği, mineral besin elementleri ve düşük glutatyon (GSH) bezleri, bitkilerin Pb alım potansiyeli ile birlikte incelenmiştir. Hem transgenik hem de transgenik olmayan bitkiler için Pb uygulamasındaki artışa bağlı olarak yer üstü biyokütle çevrildi aşamalı bir düşüş gözlendi. Yaprak besinlerinin bulaştığı, aşırı Pb işlemlerinden olumsuz etkilenmiştir, bunlardan en büyük düşüşü. Sürgün Pb yüksek derecesi 76.0 mg kg kadar ulaşan -1 transgenik ve 70.9 mg kg -1 transgenik olmayan bitkilerde. Pb alımı, p-cV-ChMTII GFP'nin tütün bitkisine aktarılmasıyla iyileştirildi; ancak, Pb fitoremediasyonunda yeterli değildi. 

References

Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171-182

Abolghasem S, Mohassel MHR, Parsa M, Hammami H (2016) Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J Phytoremediat 18(4):387-392

Ahmad P, Umar S, Sharma S (2010) Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, Ahmad MSA (eds). Plant Adaptation and Phytoremediation. Springer Press, Nederland, p:99-118

Akinci IE, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr J Agric Res 5: 416-423

Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals - Concepts and applications. Chemosphere 91:869-881

Anjum NA, Ahmada I, Mohmooda I, Pacheco M, Duartea AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids-A review. Environ Exp Botany 75:307-324

ATSDR, (2019). Priority List of Hazardous Substances. The Agency for Toxic Substances and Disease Registry, USA. https://www.atsdr.cdc.gov/SPL/#2019spl (accessed 09.01.2021).

Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432-440

Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464-465

Bremner JM, Mulvaney CS (1982) Nitrogen – Total. In: Page AL, Miller RH, Keeney DR (eds.): Methods of Soil Analysis, Part 2, Chemical and Microbial Properties: Agronomy Society of

America, Agronomy Monograph 9. Madison, 595-624

Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Song WY, Lee Y, Lim YP, Liu JR (2011) Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Cult 105:85-91

Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222-1227

Chen, M.. Ma, L.Q. and Harris, W.G. 2001. Distribution of Pb and As in soils at a shooting facility in central Florida. Soil and Crop Sciences Society of Florida, Proceedings, 60 (2001), pp. 15-20

Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotech Lett 8:279-284

Daghan H (2004) Phytoextraction of heavy metal from contaminated soils using genetically modified plants. RWTH-Aachen Fakultat für Mathematik, Informatik und Naturwissenschaften, Institut fur Umweltforschung (Biology V), PhD thesis, Aachen-Germany. p:111

Daghan H, Arslan M, Uygur V, Koleli N (2013) Transformation of tobacco with ScMTII gene-enhanced cadmium and zinc accumulation. Clean-Soil Air Water 41(5):503-509

Daghan H, Koleli N (2012) Comparative evaluation of transgenic and non transgenic tobacco for the phytoextraction of nickel-contaminated soils. Ekoloji 21(84):90-97 (in Turkish)

Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101-117

EPA 1995. Contaminants and Remedial Options at Select Metals-Contaminated Sites. EPA/540/R95/512.

Eren A (2010) Reclamation possibility of Pb contaminated soil by using transgenic tobacco plant. Mustafa Kemal University, Institute of Applied Science, Department of Soil Science, MSc Thesis, p:64

Eren A (2014) Heavy metal extraction potential of Inula helenium, Physalis angulata and Verbascum thapsus in Heavy Metal Polluted Soils. Mustafa Kemal University, Institute of Applied Science, Department of Soil Science, PhD Thesis, p:128

Eren A, Daghan H (2014) Transgenic tobacco-bearing p-cv-ChMTIIGFP gene accumulated more lead compared to wild type. Pol J Environ Stud 23(2):569-571

Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Flink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Nat Acad USA 80:4803-4807

Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biop Res Co 303:440-445

Godbold DL, Kettner C (1991) Use of root elongation studies to determine aluminium and lead toxicity in Picea abies seedlings. J Plant Physiol 138:231-235

Gupta DK, Shrivastava A, Singh VP (2008) Phytoremediation of induced lead toxicity in Vigna munga (L.) Hepper by vetiver grass. The vetiver system for environmental protection and natural disaster management. pp. 126 - 135. Cochin, India

Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. Is not related to phytochelatins but the glutathione. J Hazard Mater 177:437-444

Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Huang HG, Srivastava S, Yang XE (2011) Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions. Bull Environ Contam Toxicol 86:272-277

Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161 doi:10.1007/s11356-013-1485-4

Haider S, Kanwal S, Uddin F, Azmat R (2006) Phytotoxicity of Pb II: changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pak J Biol Sci 9:2062-2068

Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229-1231

Huang GY, Wang YS, Sun CC, Dong JD (2010) The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Arsenal Hydrobiol Stud 39:11-25

Jones JB, Wolf B, Mills HA (1991) Plant analysis hand book. Micro-Macro Pub., Athens, GA. pp. 30-34.

Kabata-Pendias A, Pendias H (2000) Trace elements in soil and plants, 3rd ed. CRC press, Boca Raton, FL

Kabata-Pendias A (2011) Trace elements in soils and plants, 4th ed. CRC Press, Boca Raton, London, FL

Kayser A (2000) Evaluation and enhancement of phytoextraction of heavy metals from contaminated soils. In Swiss Federal Institute of Technology Zürich, PhD thesisi, pp. 153. Zürich

Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55: 661-672

Lamhamdi M, El Galiou O, Bakrim A, Novoa-Munoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20:29-36

Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827-836

Lefebvre DD, Miki BL, Lalibertea JF (1987) Mammalian metallothionein functions in plants. Bio/Technology 5:1053-1056

Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ Pollut 153:3-13

Li X, Cen H, Chen Y, Xu S, Peng L, Zhu H, Li Y (2016) Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides. Int J Phytoremediat 18(3):251-260

Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421-428

Lindsay, W.L. 2001. Chemical Equilibria in Soils. Blackburn Press, New Jersey.

Liu JR, Suh MC, Choi D (2000) Phytoremediation of cadmium contamination: Overexpression of metallothionein in transgenic tobacco plants. Bundesgesundheitsbl-Gesundheitforsch- Gesundheitsschutz 43:126-130

Mellor, A. And McCartney, C. 1994. The effects of lead shot deposition on soils and crops at a clay pigeon shooting site in northern England. Soil Use and Management, 10: 124-129

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 3. Chemical methods, Bigham J. M. (ed) Madison: Soil Science Society of America (SSSA) and American Society of Agronomy (ASA) pp. 961-1010.

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Phys 49:249-279

Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular No:939, US Government Printing Office Washington p.1-19

Paz-Alberto AM, Sigua GC (2013) Phytoremediation: A green technology to remove environmental pollutants. Am J Clim Chang 2:71-86

Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam T 213:113-136

Ramesh P, Abraham K, Damodharam T (2015) Impact of lead toxicity on morphological and biochemical parameters of red sanders (Pterocarpus Santalinus L), Tirupati. A.P. India. Int J Sci Res 4(1):168-170

Richards LA (1954) Diagnosis and ımprovement of saline and alkali soils. United States Department of Agriculture Handbook 60:94

Rooney, C.P. and McLaren, R.G. 2000. Distribution of soil Pb contamination at clay target shooting ranges. Australasian Journal of Ecotoxicology, 6: 95-102

Sakulsak N (2012) Metallothionein: an overview on its metal homeostatic regulation in mammals. Int J Morphol 30(3):1007-1012

Saghi A, Mohassel MHR, Parsa M, Hammami H (2016) Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J Phytoremediat 18(4):387-392

Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Tech 36:4676-4680

Salama AK, Osman KA, Gouda NAR (2016) Remediation of lead and cadmium-contaminated soils. Int J Phytoremediat 18(4):364-367

Salt DE, Blaylock M, Kumar PBAN, Dushenkov S, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio Tech 13:468-474

SAS (1997) Statistical Analysis System (SAS) Base SAS Software Reference Card. Version 6.12. USA: Cary, N.C., SAS Institute Inc; pp. 211-253

Sengar RS, Pandey M (1996) Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segment. Biol Plant 38:459-462

Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35-52

Soil Survey Staff (1951) Soil survey manual. U. S. Dept. Agr. Handbook No:18, U.S Goverment Print Office, Washington

Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914-919

Succuro JS (2010) The effectiveness of using typha latifolia (Broadleaf Cattail) for phytoremediation of increased levels of lead-contamination in soil. The Faculty of Humboldt State University, Master thesis, 69p

Suh MC, Choi D, Liu JR (1998) Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol Cells 8:678-84

USEPA (1995) Method 3051, Microwave assisted acid digestion of sediments, sludges, soils and oils. In: Test methods for evaluating solid waste, 3rd ed, United State Environmental Protection Agency, Washington DC. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf

Walker WM, Miller JE, Hassett JJ (1997) Effect of lead and cadmiyum upon the calcium, magnesium, potassium and phosphorus concentration in young corn plants. Soil Sci 124:145-151

Xiong Z, Zhao F, Li M (2006) Lead toxicity in Brassica pekinensis Rupr.: Effect on nitrate assimilation and growth. Environ Toxicol 21(2):147-153

Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645-655

Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1-17. doi: 10.1007/s10311-009-0268-0

Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater:lessons from the field. Environ Sci Pollut Res 16:765-794. doi: 10.1007/s11356-009-0213-6

Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S A J Bot 76:167-179

Yuan H, Zhang Y, Huang S, Yongheng Y, Chunsun G (2015) Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. Chinensis. Environ Sci Pollut Res 22:2808-2816. doi: 10.1007/s11356-014-3535-y

Published

2021-03-09

How to Cite

Hatice DAGHAN, Veli UYGUR, & Abdullah EREN. (2021). Lead Phytoremediation Potential of Wild Type and Transgenic Tobacco Plants. ISPEC Journal of Agricultural Sciences, 5(1), 168-182. https://doi.org/10.46291/ISPECJASvol5iss1pp168-182

Issue

Section

Articles