The Physiological Parameters which Measured in Different Growing Stages of II. Crop Soybean Cultivars [Glycine max (L.) Merrill]

Abstract views: 287 / PDF downloads: 242




SPAD, leaf area index, leaf area cultivar, correlation


The study, which includes 13 soybean varieties in different maturation groups, was carried out according to a randomized complete block design with three replications in Şırnak province in 2019.  In the study, Chlorophyll content (SPAD), leaf area (LA), leaf area index (LAI) and leaf growth rate (LGR) characteristics measured at the beginning of flowering (R1) and seed maturity (R5) were investigated. The SPAD value ranged  35.35-42.20 in R1 and 42.33-36.5 in R5; LA feature varied between 172.33 cm2 - 41.66 cm2 in R1, 198.66 cm2 - 46 cm2 in R5; LAI property varied between 2.46 cm2 / cm2 - 1.14 cm2 / cm2 in R1, and 6.75 cm2 / cm2 - 3.34 cm2 / cm2 in R5. Among the physiological measurements examined, a positive and 0.1% positive relationship between LAI (R5) and LGR (r = 0.908) and a positive and 1% significant relationship between LA (R1) and LA (R5) (r = 0.544) were observed.


Battisti, R., PC, Sentelhas, F.G., Pilau, CA, Wollmann. 2013. Climatic efficiency for soybean and wheat crops in the state of Rio Grande do Sul, Brazil, in different sowing date. (In Portuguese, with English abstract.). Cienc. Rural 43:390–396. doi:10.1590/S0103-84782013000300003

Chang, YZ.1981. LAI of high-yielding cultivation in soybean. Sci. Agric. Sin. (in Chinese) 2: 22–26.

Fehr, WR., Caviness, CE. 1977. Stages of soybean development, Iowa State University, Ames, IA. Coden: Iwsrbc (80) 1-12.

Fischer RA. 2001. Selection traits for improving yield potential. Application of physiology in wheat breeding, Eds.: Reynolds, Chapter-13, 148-159.

Frıtschı, F.B., Ray, J.D. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 45(1): 92–98.

Karaman, M., Akıncı, C., Yıldırım, M. 2014. Investigation of the relationship between grain yield with physiological parameters in some bread wheat varieties. Trakya University Journal of Natural Sciences, 15(1), 41-46.

Kızılgeçi, F., Akıncı, C., Albayrak, Ö., Yıldırım, M. 2017. Tritikale hatlarında bazı fizyolojik parametrelerin verim ve kalite özellikleriyle ilişkilerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), 337-344.

Kızılgeçi, F., Yıldırım, M. 2019. Durum buğdayın başaklanma dönemine ait bazı fizyolojik ölçümlerin verim ve kalite özellikleriyle ilişkilerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(4), 777-785.

Koc, M., Barutcular, C., Genc, D., 2003. Photosynthesis and productivity of old and modern durum wheats in a Mediterraean Environment. Crop Sci, 43:2089–2098.

Lıu, X., Jın, J., Herbert, S.J., Zhang, Q., Wang, G. 2005. Yield components, dry matter, laı and lad of soybeans in northeast China. Field Crops Research, 93(1): 85-93.

Öztürk, F., Söğüt, T. 2018. The effects of tıllage methods and plant densıty on growth, development and yıeld of soybean [Glycine Max (L.) Merrill] grown under maın and second croppıng system: II. Growth-development component. Scientific Papers. Series A. Agronomy, Vol. LXI, No. 1. 353-359.

Pedersen, P., Lauer, JG. 2004. Soybean growth and development in various management systems and planting dates. Crop Sci 44: 508–515.

Sentelhas, PC., R. Battisti, GMS., Câmara, JRB., Farias, AC., Hampf, C, Nendel, C. 2015. The soybean yield gap in Brazil: Magnitude, causes and possible solutions for sustainable production. J. Agric. Sci. 153:1394–1411.


Shafagh-Kolvanagh, J., Zehtab-Salması, S., Javanshr, A., Moghaddam, M., And Nasab, A.D.M. 2008. Effects of nitrogen and duration of weed ınterference on grain yield and SPAD (chlorophyll) value of soybean [Glycine max (L.) Merrill.]. Journal of Food, Agriculture & Environment, 6 (3&4): 368-373.

Shegro, A., Atilaw, A., Pal, U.R., Geleta, N. 2010. Influence of varietis and planting dates on growth and development of soybean (Glycine Max.). İn Metekel Zone, North Western Ethiopia. Journal of Agronomy, 9(3), 146-156.

Sınclaır, T.R., Vadez, V. 2012. The future of grain legumes in cropping systems. Crop and Pasture Science, 63(6): 501–512.

Tuik 2018. “İstatistik Bölümü İnternet Sitesi,”

Tunçtürk, M., Barış, M., Söğüt, T. 2020. Ekim zamanı uygulamalarının bazı soya fasulyesi (Glycine max (l.) merrill) çeşitlerinde verim ve verim özelliklerine etkisi. ISPEC Journal of Agricultural Sciences, 4(4), 717-731.

Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1): 37-46.

Van Roekel, R.J., Purcell, L.C. 2014. Soybean biomass and nitrogen 124 accumulation rates and radiation use efficiency in a maximum yield environment. Crop Science, 54: 1189–1196.

Vollmann, J., Sato, T., Walter, H., Schweıger, P., Wagentrıstl, P. 2011. Soybean dı-nitrogen fixation affecting photosynthesis and seed quality characters. Soil, Plant and Food Interactions, s.496-502.

Yadava UL. 1986. Arapid and nondestructive method to determine chlorophyll in intact leaves. Hort. Science, 21: 1449–1450.

Yıldırım, M., Akıncı, C., Müjde, K. O. Ç., Barutçular, C. 2009. Bitki örtüsü serinliği ve klorofil miktarının makarnalık buğday ıslahında kullanım olanakları. Anadolu Tarım Bilimleri Dergisi, 24(3), 158-166.

Zanon, A.J., NA. Streck, P., Grassini. 2016. Climate and management factors influence soybean yield potential in a subtropical environment. Agron. J. 108:1447–1454. doi:10.2134/agronj2015.0535

Zhang, R.Z., Tıan, L., Zheng, J.L.1962. Laı and high- yield properties in soybean. J.Northeast Agric.Coll.3. 1-7.



How to Cite

KIZILGEÇİ, F., Öztürk, F. ., ELİÇİN, A. . K., & TAZEBAY ASAN, N. . (2021). The Physiological Parameters which Measured in Different Growing Stages of II. Crop Soybean Cultivars [Glycine max (L.) Merrill]. ISPEC Journal of Agricultural Sciences, 5(1), 100–106.