Determination of cytogenetic and epigenetic effects of manganese and copper on Zea mays L.

Abstract views: 220 / PDF downloads: 140


  • Filiz AYGÜN ERTÜRK Bayburt University, Health Sciences Faculty, Nutrition and Dietetics Department, Bayburt
  • Serap SUNAR Erzincan Binali Yildirim University, Pharmacy Faculty, Department of Pharmacy Professional Sciences, Erzincan
  • Güleray AĞAR Ataturk University, Faculty of Science, Department of Biology, Erzurum



Heavy metal, Genomik instability, ABA, CRED-RA, RAPD.


Heavy metal accumulation and its possible effects are prominent problem for not only human health but also for the environment and plant systems due to that heavy metals are non-biodegradable. In this research, it was aimed to examine the impacts of heavy metals on toxicity and genotoxicity in maize. Seeds of corn were subjected to various concentrations of MnSO4 and CuSO4 for determining their effects on DNA methylation, DNA damage levels, protein and phytohormone alterations. The results revealed that an increase in copper and manganese concentrations causes decrease in soluble protein levels, genomic template stability (GTS) and mitotic index but causes an increase in RAPD profile alterations and DNA hypermethylation. Additionally, HPLC analyses show that CuSO4 and MnSO4 contamination reduces growth-promoting hormones, like gibberellic acid (GA), zeatin (ZA) and indole acetic acid (IAA), and increases the abscisic acid (ABA). This study obviously indicated that CuSO4 and MnSO4 have epigenetic and genotoxic effects. A decrease in the phytohormone level (ZA, GA, and IAA) and an increase in the ABA level under CuSO4 and MnSO4 are thought to be a part of the defense system of maize to struggle with stress.


Anastassopoulou, J. 2003. Metal–DNA interactions. J. Mol. Struct., 651: 19-26.

Atha, D.H., Wang, H., Petersen, E.J., Cleveland, D., Holbrook, R.D., Jaruga, P., Dizdaroglu, M., Xing, B., Nelson, B.C. 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol., 46, 1819–1827.

Aydin, S.S., Gokce, E., Buyuk, I., Aras, S. 2012. Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat. Res., 746: 49-55.

Brega, S.M., Vassilieff, I., Almeida, A., Mercadante, A., Bissacot, D., Cury, P.R., Freire-Maia, D.V. 1998. Clinical cytogenetic and toxicological studies in rural workers exposed to pesticides in Botucatu, Sao Paulo, Brazil. Public Health Rep., 14: 109-115.

Cakmak, I., Marschner, H., Bangert, F. 1989. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot., 40: 404-412.

Chinnusamy, V., Gong, Z., Zhu, J.K. 2008. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol., 50: 1187-1195.

Dimitrova, I., Ivanova, E. 2003. Effect of heavy metal soil pollution on some morphological and cytogenetical characteristics of flax (Linum usitatissum L.). J. Balkan Ecol., 4: 212-218.

Enan, M.R. 2006. Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotechnol. Appl. Biochem., 43: 147–154.

Gerber, G.B., Leonar, A., Hantson, P., 2002. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit. Rev. Oncol. Hematol. 42: 25-34.

Girotti, A.W. 2001. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J. Photochem. Photobiol. Biol., 63: 103-113.

Kang, J., Chen, J., Shi, Y., Jia, J., Wang, Z. 2005. Histone hypoacetylation is involved in 1, 10-phenanthroline-Cu2+-induced human hepatoma cell apoptosis. J. Biol. Inorg. Chem., 10: 190-198.

Korpe, D.A., Aras, S. 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat. Res. 719: 29–34.

Kuraishi, S,, Tasaki, K., Sakurai, N., Sadatoku, K. 1991. Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol., 32: 585-591.

Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of head of Bacteriophage-T4. Nature, 227: 680-685.

Li, G., Quiros, C.F. 2001. Sequence-Related Amplified Polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 103: 455-461.

Lima, P.D., Leite, D.S., Vasconcellos, M.C., Cavalcanti, B.C., Santos, R.A., Costa-Lotufo, L.V., Pessoa, C., Moraes, M.O., Burbano, R.R. 2007. Genotoxic effects of aluminum chloride in cultured human lymphocytes treated in different phases of cell cycle. Food Chem. Toxicol. 45: 1154-1159.

Mediouni, C., Benzarti, O., Tray, B., Mohamed, H.G., Jemal, F. 2006. Cadmium and copper toxicity for tomato seedlings. Agron. Sustain. Dev., 26: 227–232.

Michailova, P., Petrova, N., Ilkova, J., Bovero, S., Brunetti, S., White, K., Sella, G. 2006. Genotoxic effect of copper on salivary gland polytene chromosomes of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Environ. Pollut., 144: 647-654.

Mosa, K.A., El-Naggar, M., Ramamoorthy, K., Alawadhi, H., Elnaggar, A., Wartanian, S., Ibrahim, E., Hani, H. 2018. Copper nanoparticles ınduced genotoxicity, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front. Plant. Sci., 9: 872.

Muccifora, S. 2007. Effects of copper on spore germination, growth and ultrastructure of Polypodium cambricum L. gametophytes. Environ. Pollut., 153: 369–375.

Nelson, J.R., Lawrence, C.W., Hinkle, D.C. 1996. Thymine–thymine dimer bypass by yeast DNA-polymerase-zeta. Science, 272: 1646-1649.

Nepravishta, R., Bellomaria, A., Polizio, F., Paci, M., Melino, S. 2010. Reticulon RTN1-C(CT) peptide: a potential nuclease and inhibitor of histone deacetylase enzymes. Biochemistry, 49: 252-258.

Ozfidan, C., Turkan, I., Sekmen, A.H., Seckin, B. 2013. Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll flourescens and osmotic adjustment in Arabidopsis thaliana wild-type (Colombia) and ABA deficient mutant (aba2). Environ. Exp. Bot., 86: 44-51.

Pittman, J.K. 2005. Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol. 167: 733-742.

Prütz, W.A., Butler, J., Land, E.J. 1990. Interaction of copper (I) with nucleic acids. Int. J. Radiat. Biol., 58: 215-234.

Roth, J.A., Garrick, M.D. 2003. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem. Pharmacol., 66: 1-13.

Shangguan, L., Fang, X., Chen, L., Cui, L., Fang, J., 2018. Genome‑wide analysis of autophagy‑related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247:1449-1463.

Song, M.O., Li, J., Freedman, J.H. 2009. Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol. Genom., 38: 386-401.

Tan, J., He, S., Yan, S., Li, S., Li, H., Zhang, H., Zhao, L., Li, L. 2014. Exogenous EDDS modifies copper-induced various toxic responses in rice. Protoplasma, 251:1213-1221.

Taspinar, M.S., Agar, G., Alpsoy, L., Yildirim, N., Bozari, S. 2011. The protective role of zinc and calcium in Vicia faba seedlings subjected to cadmium stress. Toxicol. Ind. Health, 27: 73-80.

Turker, M., Battal, P., Agar, G., Gulluce, M., Sahin, F., Erez, M.E, Yildirim, N. 2008. Allelopathic effects of plants extracts on physiological and cytological processes during maize seed germination. Allelopathy J., 21: 273-286.

Unyayar, S., Çelik, A., Çekiç, F.Ö., Gözel, A. 2006. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis, 21: 77-81.

Yıldız, M., Cigerci, I.H., Konuk, M., Fidan, A.F., Terzi, H. 2009. Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75: 934-938.

Yigider, E., Taspinar, M.S., Sigmaz, B., Aydin, M., Agar, G. 2016. Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene, 6:13-17.

Zavitsanos, K., Nunes, A.M., Malandrinos, G., Hadjiliadis, N. 2011. Copper effective binding with 32–62 and 94–125 peptide fragments of histone H2B. J. Inorg. Biochem., 105: 102-110.

Zhou, C.P., Qi, Y.P., You, X., Yang, LT., Guo, P., Ye, X., Zhou, X.X., Ke, F.J., Chen, L.S. 2013. Leaf cDNA-AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity. BMC Genomics, 14:621.




How to Cite

Filiz AYGÜN ERTÜRK, Serap SUNAR, & Güleray AĞAR. (2021). Determination of cytogenetic and epigenetic effects of manganese and copper on Zea mays L. ISPEC Journal of Agricultural Sciences, 5(3), 529–543.