Determination of Combustion Characteristics of Pellets Obtained From Sweet Sorghum Bagasse Growed Under Cukurova Conditions

Authors

  • Mahmut DOK Karadeniz Tarımsal Araştırma Enstitüsü-Samsun
  • Ayşegül E. ÇELİK Karadeniz Tarımsal Araştırma Enstitüsü-Samsun
  • Mine AKSOY Osmangazi İlçe Tarım ve Orman Müdürlüğü-Bursa
  • Celal YÜCEL Şırnak Üniversitesi Ziraat Fakültesi, Tarla Bitkileri Bölümü- Şırnak

DOI:

https://doi.org/10.46291/ISPECJASvol5iss4pp820-832

Keywords:

Tatlı sorgum, pelet, ısıl değer, baca gazı emisyonları

Abstract

Sweet sorghum is a C4 plant with a high sugar ratio and biomass yield and grows in warm conditions that do not need much water. The high sugar content of sweet sorghum, which is grown as a forage crops, has brought the plant to the fore in the use of bioethanol production. The objectives of this work were to produce biopellets made from sorghum bagasse and to evaluate its calorofic value and combustion characteristics. In this study, 21 different sweet sorghum (Sorghum bicolor var. saccharatum (L.) Mohlenbr.) genotypes were used as material. The extracted stalks were turned into pellets after being dried to 10-15% moisture content and milled. The calorific value, ash content and flue gas emission (O2, CO2, CO, NO, NOx and SO2) values of the obtained pellets were determined. According to the two-year averages of the study, as a result of the analyzes made on the pellets, the calorific value, ash content, O2, CO2, CO, NO, NOx and SO2 varied between 4239-4361 cal/g, 4.23-5.88%, 13.6-17.3%, 3.5-7.1%, 459-1211 ppm, 85-152 ppm, 89-160 ppm and SO2 0-2 ppm, respectively. When the data obtained as a result are examined, it is observed that the calorific value of A and B class pellets should be 3463 cal/g, and above according to the determined standards, and since the heating value of the pellets obtained in both years in our study is much higher than the value specified in the standard, they are of A class quality in terms of calorificl value. has been determined. When sweet sorghum stems could be an alternative to coal, a clean, environmentally friendly and renewable energy source when evaluated as pellets.

According to the two-year averages of the study, as a result of the analyzes made on the pellets, the calorific value, ash content, O2, CO2, CO, NO, NOx and SO2 varied between 4239-4361 cal/g, 4.23-5.88%, 13.6-17.3%, 3.5-7.1%, 459-1211 ppm, 85-152 ppm, 89-160 ppm and SO2 0-2 ppm, respectively.

 When the data obtained as a result are examined, it is observed that the calorific value of A and B class pellets should be 3463 cal/g, and above according to the determined standards, and since the heating value of the pellets obtained in both years in our study is much higher than the value specified in the standard, they are of A class quality in terms of calorificl value. has been determined. When sweet sorghum stems could be an alternative to coal, a clean, environmentally friendly and renewable energy source when evaluated as pellets.

References

Anonim, 2005a. Isınmadan kaynaklanan hava kirliliğini kontrolü yönetmeliği, 13.01.2005 Tarihli Resmi Gazete Sayısı: 25699.

Anonim, 2005b. Yenilenebilir enerji kaynaklarının elektrik enerjisi üretimi amaçlı kullanımına ilişkin kanun, kanun numarası: 5346 Kabul Tarihi: 10/ 5/ 2005 Yayımlandığı R.Gazete: Tarih: 18/5/2005, Sayı: 25819 Yayımlandığı Düstur: Tertip: 5 Cilt: 44

Anonim, 2021. 14 Mayıs 2021 tarihindeki CO2 konsantrasyonu değerleri. https://www.co2.earth/daily-co2 erişim tarihi 15 Mayıs 2021.

Aragon-Garita, S., Moya, R., Bond, B., Valaert, J., Filho, M. F. 2016. Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica. Biomass and Bioenergy 87: 84-95.

Arvelakis, S., Frandsen, F.J. 2010. Rheology of fly ashes from coal and biomass co-combustion. Fuel, 89: 3132-3140.

Balat, M., Balat, H., Öz, C. 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science, 34: 551-573.

Dok, M. 2014. Karadeniz bölgesinin tarımsal atık potansiyeli ve bunlardan pelet yakıt olarak yararlanılması. Enerji Tarımı ve Biyoyakıtlar 4. Ulusal Çalıştayı, 28-29 Mayıs 2014, sayfa. 211-222. Samsun.

Dwivedi, P., Khanna, M., Bailis, R., Ghilardi, A. 2014. Potential greenhouse gas benefits of transatlantic wood pellet trade. Environ Res Lett., 9: 1-11.

Edenhofer, O., et al. (Eds.). 2011. IPCC special report on renewable energy sources and climate change mitigation. Cambridge/New York: Cambridge University Press.

FAO. 2021. FAOSTAT. Food and Agriculture Organization (FAO), Rome. Available at: http://www.fao.org/faostat/en/ #data/FO. Accessed 3 May 2021.

Ferreira, I.R., dos Santos, R., Castro, R., Carneiro, A.C.O., Castro, A.F., Santos, C.P.S., Costa, S.E.L., Mairinck, K. 2019. Sorghum (Sorghum bicolor) Pellet Production and Characterization. Floresta e Ambiente, 26(3): e20171001.

Guiying, L., Weibin, G., Hicks, A., Chapman, K.R. 2003. A training manual for sweet sorghum. Under The FAOProject TCP/CPR/0066, 1-73. Erişim: 31.10.2013.

Johnson, F., Tella, P., Israilava, A., Takama, T., Diaz-Chavez, R., Rosillo-Calle, F. 2010. What woodfuels can do to mitigate climate change (FAO Forestry Paper). Available at: http://www. fao.org/docrep/013/i1756e/i1756e00.pdf. Accessed Mar 2011.

Karaer, M., Gülümser, E., Mut, H., Gültaş, T.H. 2021. Irrigation water use efficiency and economic analysis in main crop silage maize cultivation. ISPEC Journal of Agricultural Sciences, 5(3): 652-658.

Köppen, S., Reinhardt, G., Gartner, S. 2009. Assessment of energy and greenhouse gas inventories of Sweet Sorghum for first and second generation bioethanol. Environment and Natural Resources Management series, 30, FAO, Rome, 1-86.

Küsek, G., Güngör. C., Öztürk, H.H., Akdemir, Ş. 2015. Tarımsal Artıklardan Biyopelet Üretimi. U. Ü. Ziraat Fakültesi Dergisi, 2: 137-145.

Lalak, J., Martyniak, D., Kasprzycka, A., Żurek, G.,Moroń, W., Chmielewska, M., Wiącek, D., Tys, J. 2016. Comparison of selected parameters of biomass and coal. Int. Agrophys., 30: 475-482.

Önal, E., Yarbay, R. Z. 2010. Türkiye’de yenilenebilir enerji kaynakları potansiyeli ve geleceği. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 18:77-96, İstanbul.

Puig-Arnavat, M., Shang, L., Sárossy, Z., Ahrenfeldt, J., Henriksen, U.B. 2016. From a single pellet press to a bench scale pellet mill-Pelletizing six different biomass feedstocks, Fuel Processing Technology, 142: 27-33.

Purohit, P.,Chaturvedi, V. 2018. Biomass pellets for power generation in India: a techno-economic evaluation. Environmental Science and Pollution Research, 25:29614–29632.

Simeone, M.L.F., Parrella, R. A da C., Schaffert, R.E., e Sorgo, Rodovia, E.M. 2018. Quality of high biomass sorghum pellet. Sorghum in the 21st Century. Cape Town, South Africa, 9-12 April 2018.

Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton, D. 2008. Determination of ash in Biomass, National Renewable Energy Laboratory, NREL/TP-510-42622, 1-5.

Tenorio, C., Moya R., Filho M.T., Valaert, J. 2015. Quality of pellets made from agricultural and forestry crops in costa rican tropical climates. BioResources, 10: 482-498.

TKİ. 2019. Kömür (Linyit) Sektör Raporu 2018. Türkiye Kömür işletmeleri. Ankara, http://www.tki.gov.tr/depo/TK%C 4%B0%20-%202018%20K%C3%96M% C3%9CR%20SEKT%C3%96R%20RAPORU.pdf. Erişim: 20.01.2021.

TS EN ISO 18125. Katı biyoyakıtlar-Kalorifik değerin belirlenmesi (ISO 18125:2017).

Tolay, M., Baileys, R., Waterschoot, A. 2010. Tarım ve Orman Atıklarından Enerji Üretimi.

Tolay, M. 2017. Biyokütle (Orman ve Tarım Atıkları) Yakıtlı Santrallar. Türkiye’ de Termik Santraller. TMMOB, MMO Yayın No: 668, syf (91-99), Ankara, Nisan 2017.

TS EN ISO 17225-6. 2014. Katı biyoyakıtlar-Yakıt özellikleri ve sınıfları - Bölüm 6. Öğütülmüş odunsu olmayan peletler.

Ungureanu, N., Vladut, V., Voicu, G., Dinca, M.N., Zabava, B.S. 2018. Influence of biomass moisture content on pellet properties – Review. Engineerıng For Rural Development, Jelgava, 23, 25.05.2018.

Ungureanu, N., Vlăduţ. V., Biriş S.Ş., Dincă M., Ionescu M., Zăbavă B.S., Munteanu, G.B., Voıcea L. 2016. A review on the durability of biomass pellets. 5th International Conference on Thermal Equipment, Renewable Energy and Rural Development, TE-RE-RD 2016, At Golden-Sands / Bulgaria, Volume: 2016, section 2.

WBA 2014. Pellets: a fast growing energy carrier. World Bioenergy Association (WBA), Stockholm.

Wiloso, E.I., Setiawan, A.A.R., Prasetia, H., Muryanto, Wiloso, A.R., Subyakto, Sudiana, I. M., Lestari, R., Nugroho, S., Hermawan, D., Fang, K., Heijungs, R. 2020. Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 27: 1178-1194.

Yucel, C.,Erkan, M.E. 2020. Evaluation of forage yield and silage quality of sweet sorghum in the Eastern Mediterranean region. The Journal of Animal and Plant Sciences, 20(4): 923-930.

Zengin, Y., Çelik, A.E. , Dok, M , Çolak, S , Kargidan, A , Çakır, A., Semercioğlu, A .2020. Orman atıklarının pelet olarak değerlendirilme imkânlarının araştırılması. Ormancılık Araştırma Dergisi, 7(2): 113-119.

Published

2021-12-12

How to Cite

Mahmut DOK, Ayşegül E. ÇELİK, Mine AKSOY, & Celal YÜCEL. (2021). Determination of Combustion Characteristics of Pellets Obtained From Sweet Sorghum Bagasse Growed Under Cukurova Conditions. ISPEC Journal of Agricultural Sciences, 5(4), 820-832. https://doi.org/10.46291/ISPECJASvol5iss4pp820-832

Issue

Section

Articles