Analysis Of The Influence Of Alcohol-Induced Stress On The Quantitative And Qualitative Composition Of Amino Acids Related To S-Adenosylmethionine And Glutathione Transformations
Abstract views: 207 / PDF downloads: 165
DOI:
https://doi.org/10.46291/ISPECJASvol5iss4pp977-983Keywords:
alcohol-induced oxidative stress, Amino acids, S-adenosylmethionine, Glutathione, Bioprotectors, Rats.Abstract
Studies of preparations that decrease oxidative stress and, as a consequence, that can prevent or reduce the development of alcoholic liver disease are relevant. A wide range of drugs, the bioprotective effect of which is studied, in its action is associated with natural antioxidant systems. Therefore, the study of the features of these systems is necessary for the effective development of bio protectors. The aim is to analyze changes in the quantitative and qualitative composition of amino acids involved in antioxidant mechanisms in the presence of alcohol-induced stress in rats. In the presence of alcohol-induced oxidative stress, there are changes in the quantitative and qualitative composition of amino acids (methionine, serine, taurine), which are involved in the mechanisms of antioxidant protection - cycles of S-adenosylmethionine and glutathione. A slight increase in methionine levels in the blood serum of animals of the experimental group and disruption of the recovery cycle of methionine under alcohol-induced oxidative stress are arguments for the ineffectiveness of S-adenosylmethionine as a bioprotective substance. The same decrease in the level of serine (by 15%) and taurine (by 13%), and analysis of literature data, may be indicate the "secondary" nature of glutathione as an antioxidant compared to taurine.
References
Chevari, S., Chaba, I., Sekey, Y. 1985. Rol’ superoksiddismutazy v okislitel’nyh protsessah kletki i metod opredeleniya ee v biologicheskih materialah. Laboratornoe delo, 11: 678–681.
Goc, Z., Kapusta, E., Formicki, G., Martiniaková, M., Omelka, R. 2019. Effect of taurine on ethanol-induced oxidative stress in mouse liver and kidney. Chin J Physiol, 62(4):148-156.
Guoyao, W., Yun-Zhong, F., Sheng, Y., Joanne, R., Lupton, N., D Turner. 2004. Glutathione metabolism and its implications for health. J Nutr, 134(3): 489-92.
He, L., Long, J., Zhou, X., Liu, Y., Li, T., Wu, X. 2020. Serine is required for the maintenance of redox balance and proliferation in the intestine under oxidative stress. Faseb J, 34(3):4702-4717.
Han, H., Zhang, J., Chen, Y., Shen, M., Yan, E., Wei, C., Yu, C., Zhang, L., Wang, T. 2020. Dietary taurine supplementation attenuates lipopolysaccharide-induced inflammatory responses and oxidative stress of broiler chickens at an early age. J Anim Sci, 2020, 98(10):skaa311.
Kalachnyuk, L., Basarab, I., Mel’nychuk, D., Mel’nychuk, S., Kalachnyuk, M., Koshman, O., Kalachnyuk, G. 2011. Oxidation of lactate and ldh localization in the substructures of cell under effect of exogenous factors. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohiy im. Gzhytskoho, 13(4 (50)), 80–86.
Korolyuk, M. et. al. 1988. Metod opredeleniya aktivnosti katalazy. Laboratornoe delo, 1: 16–19.
Methionine, SAMe, Homocysteine, andthe Methionine Cycle [Internet]. Available from: https://benbest.com/health /Meth.html#homo
Nagy, L.E., Ding, W-X., Ccresci, G., Saikia, P., Shah, V. H. 2016. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology, 150(8):1756-1768.
Lu, S.C., Tsukamoto, H., Mato, J.M. 2002. Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol, 27(3):155-162.
Lu, S.C., Mato, J.M. 2005. Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol, 35(3):227-34.
Lee, D-S., Jo, H. G., Kim, M. J., Lee, H., Cheong, S. H. 2019. Antioxidant and Anti-Stress Effects of Taurine Against Electric Foot-Shock-Induced Acute Stress in Rats. Adv Exp Med Biol, 1155:185-196.
Li, S., Wei, B. K., Wang, J., Dong, G., Wang, X. 2019. Taurine Supplementation Ameliorates Arsenic-Induced Hepatotoxicity and Oxidative Stress in Mouse. Adv Exp Med Biol, 1155: 463-470.
Stal’naya, I. D., Garishvili, T. G. 1977. Metod opredeleniya malonovogo dial’degidas pomosch’yu tiobarbiturovoy kisloty. Sovremennye metody v biohimii. Moscow: Meditsina, 66–68.
Shelly C Lu. 2008. Regulation of glutathione synthesis. Mol Aspects Med, Feb-Apr, 30(1-2): 42-59.
Waly, M. I., Kharbanda, K. K., Deth, R. C. 2011. Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamin-dependent manner. Alcohol Clin Exp Res, 35(2): 277-83.
Wang, F., Zhou, H., Deng, L., Wang, L., Chen, J., Zhou, X. 2020. Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging. Mice Mediators Inflamm, 2020 Mar 2; 5821428.
Wang, Z., Ohata, Y., Watanabe, Y., Yuan, Y., Yoshii, Y., Kondo, Y., Nishizono, S., Chiba, T. 2020. Taurine Improves Lipid Metabolism and Increases Resistance to Oxidative Stress. J Nutr Sci Vitaminol (Tokyo), 66(4):347-356.
Zakon Ukrainy «Pro zakhyst tvaryn vid zhorstokoho povodzhennia. Vidomosti Verkhovnoi Rady Ukrainy (VVR), 2006, No. 27, st. 230. Available from: https://zakon.rada.gov.ua/laws/show/3447-15.
Zhang, Y., Wei, Z., Yang, M., Liu, D., Pan, M., Wu, C., Zhang, W., Mai, K. 2021. Dietary taurine modulates hepatic oxidative status, ER stress and inflammation in juvenile turbot (Scophthalmus maximus L.) fed high carbohydrate diets. Fish Shellfish Immunol, 109:1-11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The copyright of the published article belongs to its author.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.