Cadmium Pollution Impairs Maize Growth and Uptake of Cationic Essential Nutrients


Abstract views: 353 / PDF downloads: 255

Authors

  • Rengin YERLİKAYA ANLİ Dicle University, Faculty of Agriculture, Vocational School of Agriculture, Department of Crop and Animal Production, Organic Agriculture Program
  • Veysi AKŞAHİN Çukurova University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Adana
  • Şeyhmus DÜNDAR Çukurova University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Adana
  • Nadia Ali Sir Elkhtim AHMET Universty Of Khartoum Faculty of Agriculture department of Soil and environment Sciences Sudan

DOI:

https://doi.org/10.46291/ISPECJASvol6iss1pp144-153

Keywords:

Cadmium, Macro nutrient, micronutrient, nutrient content, nutrient concentration

Abstract

Human population is anticipated to increase to 9.8 billion by 2050 and this increase causes a more intensive agricultural production. The soils are polluted as the farming activities are intensified. Fertilizers and the pesticides that are used in agriculture and the imbalanced industrialization cause heavy metals to move into the soil thereby creating soil-environmental pollution. Cadmium (Cd), one of the heavy metals, is also present in the biosphere, enters the soil as a result of natural processes and anthropogenic activities, exerting toxic effects on agricultural products, food chain and living organisms. This highly toxic and dangerous metal has come to the fore with its important role in environmental pollution due to its various usage areas.  In this study, the effects of three different Cd doses on the cationic macro and micronutrient content of maize plant was investigated. Cadmium application at 2.5 and 5.0 mg kg-1 decreased shoot dry matter by % 10.8 and % 20.0 respectively compared with control treatment. While the highest macro and micronutrient contents were obtained in the control treatment, the lowest values were obtained in the Cd5 treatment. Cadmium applications were not statistically significant in shoot K, Mg and Ca concentrations but significantly decreased K and Ca contents. Compared with the control treatment, Cd applications at 2.5 and 5.0 mg/kg were determined to decrease the K content by % 9.9 and % 18.4 and Ca content by 17.7% and 21.3% respectively. When the Cd concentration and content are determined, the highest values were found to be in the Cd5 treatment. Consequently, increased Cd accumulation in shoots was determined to be associated with decreases in K, Ca, Cu, Zn, Fe and Mn uptake of maize plant. Therefore, close monitoring of nutritional problems that can potentially occur in agricultural areas contaminated with Cd might be beneficial for the evaluation of different solution proposals

References

Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M. F., Abbas, F., Hannan, F., Rinklebe, J. & Ok, Y. S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology environmental safety 140: 37-47.

Adiloglu, S. 2020. Interaction of Some Heavy Metals with Copper Content in Dock Plant. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(4): 1078-1084.

Asri, F. Ö., Sönmez, S. & Çıtak, S. 2007. Kadmiyumun Çevre ve İnsan Sağliği Üzerine Etkileri. Derim 24(1): 32-39.

Astolfi, S., Zuchi, S., Neumann, G., Cesco, S., di Toppi, L. S. & Pinton, R. 2012. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. Journal of experimental botany 63(3): 1241-1250.

Aznar-Sanchez, J. A., Piquer-Rodriguez, M., Velasco-Munoz, J. F. & Manzano-Agugliaro, F. 2019. Worldwide research trends on sustainable land use in agriculture. Land Use Policy 87.

Bolat, İ. & Kara, Ö. 2017. Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. Bartın Orman Fakultesi Dergisi 19(1): 218-228.

Cataldo, D. A., Garland, T. R. & Wildung, R. E. 1983. Cadmium uptake kinetics in intact soybean plants. Plant Physiology 73(3): 844-848.

Clijsters, H. & Van Assche, F. 1985. Inhibition of photosynthesis by heavy metals. Photosynthesis Research 7(1): 31-40.

Çelim, S. 2018. Farklı Demir Formlarinin Kadmiyum Bulaştirilmiş Yetiştrme Ortaminda Fasulye (Phaseoulus Vulgaris L. Var. Nana) Bitkisinin Gelişimine, Besin Elementi Ve Kadmiyum Alımına Etkileri. Yüksek lisans. Fen Bilimleri Enstitüsü. Toprak Biİimi Ve Bitki Besleme Ana Bilim Dalı.Van yüzüncüyıl Üniversitesi (81).

Dağhan, H. 2011. Doğal kaynaklarda ağır metal kirliliğinin insan sağlığı üzerine etkileri. Mustafa kemal üniversitesi 16(2): 15-25.

Dağhan, H., Uygur, V., Köleli, N. & Arslan, M. 2013. Transgenik ve transgenik olmayan tütün bitkilerinde ağır metal uygulamalarının azot, fosfor ve potasyum alımına etkisi. tarım bilimleri dergisi.

Erdoğrul, Ö., Tosyalı, C. & Erbilir, F. 2005. Kahramanmaraş’ta yetişen bazı sebzelerde demir, bakır, mangan, kadmiyum ve nikel düzeyleri. KSÜ Fen ve Mühendislik Dergisi 8(2): 27.

Fan, J. L., Ziadi, N., Belanger, G., Parent, L. E., Cambouris, A. & Hu, Z. Y. 2009. Cadmium accumulation in potato tubers produced in Quebec. Canadian Journal of Soil Science 89(4): 435-443.

Foy, C., Chaney, R. t. & White, M. 1978. The physiology of metal toxicity in plants. Annual review of plant physiology 29(1): 511-566.

Hernández, L. E., Lozano-Rodrıguez, E., Gárate, A. & Carpena-Ruiz, R. 1998. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Science 132(2): 139-151.

Jan, S. U., jamal, A., Sabar, M. A., Ortas, I., Isik, M., Aksahin, V., Alghamdi, H. A., Gul, S., Saqib, Z. & Ali, M. I. 2020. İmpact of zea mays l. waste derived biochar on cadmium immobilization and wheat plant growth. Pakistan Journal of Agricultural Sciences 57(5).

Kacar, B. 2009. Toprak analizleri. Nobel Yayınları No: 1387. Fen Bilimleri (90).

Kacar, B. & İnal, A. 2008. Bitki Analizleri. Nobel Yayın No: 1241. Fen Bilimleri 63(1).

Kalınbacak, K., Yurdakul, İ. & Gedikoğlu, İ. 2012. Buğdayda kadmiyumun toksiklik sınırının belirlenmesi ve bazı ekstraksiyon yöntemlerinin karşılaştırılması. Toprak Su Dergisi 1(1): 28-37.

Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. 2019. Soil and the intensification of agriculture for global food security. Environment International 132.

Lepp, N. 1981. The effect of heavy metal pollution on plants Vol 1 & 2. Appl. Sci. Publ., London.

Meda, A. R., Scheuermann, E. B., Prechsl, U. E., Erenoglu, B., Schaaf, G., Hayen, H., Weber, G. & von Wirén, N. 2007. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiology 143(4): 1761-1773.

Okcu, M., Tozlu, E., Kumlay, A. M. & Pehluvan, M. 2009. Ağır metallerin bitkiler üzerine etkileri. Alınteri Zirai Bilimler Dergisi 17(2): 14-26.

Ouzounidou, G. 1993. Changes in variable chlorophyll fluorescence as a result of Cu-treatment: dose-response relations in Silence and Thlaspi. Photosynthetica 29(3): 455-462.

Özbek, H., Kaya, Z., Gök, M. & Kaptan, H. 1995. Toprak Bilimi (Çeviri). Ç, Ü, Ziraat Fakültesi 73.

Påhlsson, A.-M. B. 1989. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, Soil Pollution 47(3-4): 287-319.

Rafique, M., Ortas, I., Rizwan, M., Sultan, T., Chaudhary, H. J., Işik, M. & Aydin, O. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science Pollution Research 26(20): 20689-20700.

Rehman, M. Z.-u., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M. & Qayyum, M. F. 2015. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environmental Science Pollution Research 22(21): 16897-16906.

Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T. & Ok, Y. S. 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science Pollution Research 23(3): 2230-2248.

Rochayati, S., Du Laing, G., Rinklebe, J., Meissner, R. & Verloo, M. 2011. Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: accumulation of cadmium and zinc in soils and shoots of maize plants. Journal of Plant Nutrition Soil Science 174(2): 186-194.

Sarwar, N., Ishaq, W., Farid, G., Shaheen, M. R., Imran, M., Geng, M. J. & Hussain, S. 2015. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Ecotoxicology and Environmental Safety 122: 528-536.

Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S. & Farid, G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture 90(6): 925-937.

Shen, H., Christie, P. & Li, X. 2006. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health 28(1-2): 111-119.

Sikka, R. & Nayyar, V. 2012. Cadmium Accumulation and Its Effects on Uptake of Micronutrients in Indian Mustard Brassica juncea (L.) Czern. Grown in a Loamy Sand Soil Artificially Contaminated with Cadmium. Communications in Soil Science and Plant Analysis 43(4): 672-688.

Smith, G., GC, S. & EG, B. 1983. Cadmium-zinc interrelationships in tomato plants.

Sozubek, B., Belliturk, K. & Saglam, M. T. 2014. Cadmium and zinc accumulation in maize influenced by zinc fertilizer in cadmium polluted soil. Türk Tarım ve Doğa Bilimleri Dergisi 1(Özel Sayı-2): 1407-1412.

Sönmez, İ., Kaplan, M. & Sönmez, S. 2008. Kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Derim 25(2): 24-34.

Van Assche, F. & Clijsters, H. 1990. Effects of metals on enzyme activity in plants. Plant, Cell Environment International 13(3): 195-206.

Veselov, D., Kudoyarova, G., Symonyan, M. & Veselov, S. 2003. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seedlings. Bulg Journal Plant Physiol 29(3-4): 353-359.

Wu, F. & Zhang, G. 2002. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. Journal of Plant Nutrition 25(6): 1163-1173.

Zhang, G., Fukami, M. & Sekimoto, H. 2002. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research 77(2-3): 93-98.

Zhong, W. L., Li, J. T., Chen, Y. T., Shu, W. S. & Liao, B. 2012. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Journal of Environmental Monitoring 14(9): 2497-2504.

Zhu, Y. G., Zhao, Z. Q., Li, H. Y., Smith, S. E. & Smith, F. A. 2003. Effect of zinc-cadmium interactions on the uptake of zinc and cadmium by winter wheat (Triticum aestivum) grown in pot culture. Bulletin of Environmental Contamination and Toxicology 71(6): 1289-1296.

Downloads

Published

2022-03-25

How to Cite

YERLİKAYA ANLİ, R. ., AKŞAHİN, V. ., DÜNDAR, Şeyhmus ., & AHMET, N. A. S. E. . (2022). Cadmium Pollution Impairs Maize Growth and Uptake of Cationic Essential Nutrients . ISPEC Journal of Agricultural Sciences, 6(1), 144–153. https://doi.org/10.46291/ISPECJASvol6iss1pp144-153

Issue

Section

Articles