Determination of Fermentation Properties of Silages Made at Different Mixing Ratios and Harvest Stage of Maize and Soybean Intercropping


Abstract views: 61 / PDF downloads: 39

Authors

DOI:

https://doi.org/10.5281/zenodo.7311489

Keywords:

Maize-Soybean, sowing pattern, harvest stage, fermentation, organic acids

Abstract

Knowing the fermentation characteristics and quality characteristics of silage is important for silage quality and to feed animal. Fermentation characteristics of silages made in different mixing ratios and cutting periods of maize (Zea mays L.) and soybean (Glycine max L.) grown in Çukurova conditions were determined. Different mixing systems of maize and soybean [pure maize, pure soybean, alternate rows (1M+1S, 1M+2S, 2M+1S) and same row (1M +1S, 1M+2S, 2M+1S)]. The forage was harvested at two different growth stages of maize such as the milk and dough stages. In the research, Yeşilsoy soybean variety and 31Y43 variety as silage corn were used as material. The experiments were carried out A split plot randomised complete block design with 4 replications in the Eastern Mediterranean Agricultural Research Institute Experiment Area for 2 years under second crop conditions. Although mixing ratios vary according to form periods and years; crude ash content 5.20-11.33%, pH 3.75-5.51, DM ratio between19.60 and 37.59%; lactic acid from organic acids 4.76-163.7%, acetic acid 2.95-94.4%, propionic acid 0.87-4.30%, butyric acid 0.28-55.10% and ethyl alcohol 2.03-25.83%. Pure soybean has higher ash content, pH, AA, PA and BA than pure corn and sowing pattern; It is seen that DM ratio, LA and ethyl alcohol have lower values ​than pure corn and mixtures. As a result of the research, in terms of important silage parameters, it is seen that the dough stage period has better than the milk stage period and pure corn has better characteristics than pure soybean, and the mixtures are equivalent to corn in terms of fermentation properties.

 

References

Alanis, P., Sorenson, M., Beene, M., Krauter, C., Shamp, B., Hasson, A.S. 2008. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase microextraction with gas chromatography/mass spectrometry. Atmospheric Environment 42:6417- 6424.

Albrecht, K.A., Muck, R.E. 1991. Proteolysis in ensiled forage legumes that vary in tannin concentration. Crop Science, 31: 464-469.

Albrecht, K.A., Beauchemin, K.A. 2003. Alfalfa and other perennial legume silage. In: Buxton, D.R., Muck, R.E., Harrison, J.H. (Eds.), Silage Science and Technology. Agron. Monogr. 42. ASA, CSSA, and SSSA, Madison, WI, pp. 633–664.

Alçiçek, A., Özkan, K. 1997. Silo yemlerinde fiziksel ve kimyasal yöntemlerle silaj kalitesinin saptanması, Türkiye I. Silaj Kongresi, 16-19 Eylül, Hasad Yayıncılık, İstanbul, 241-246, Bursa

Altınok, S., Genç, A., Erdoğdu, İ. 2005. Farklı ekim şekillerinde yetiştirilen mısır ve soyadan elde edilen silajlarda kalite özelliklerinin belirlenmesi. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül 2005, II: 1011-1016.

Anil, L., Park, J. Phipps, R.H. 2000. The potential of forage-maize intercrops in ruminant nutrition. Animal Feed Science and Technology, 85:157-164.

AOAC. 1990. Official Methods of Analysis (15th Ed.). Maryland, USA: Association of Official Analytical Chemists.

Baghdadi, A., Halimi, R.A., Radziah, O., Martini, M.Y., Ebrahimi, M. 2016. Fermentation characteristics and nutritive value of corn silage intercropped with soybean under different crop combination ratios. The Journal of Animal & Plant Sciences, 26(6):1710-1717.

Bjorge, M. 1996. Ensiling Process. Agriculture Food and Rural Development. Available at www.agric.gov.ab.ca/crops/forage/silage2.html [Verified 2 May 2011].

Cai, Y., Benno,Y., Ogawa, M., Ohmomo, S., Kumai, S., Nakase, T. 1998. Infuence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Env. Microb. 64: 2982–2987.

Chung, M.Y., Beene, M., Ashkan, S., Krauter, C., Hasson, A.S. 2010. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies. Atmospheric Environment, 44:786-794.

Contreras-Govea, F.E., Muck, R.E., Armstrong, K.L., Albrecht, K.A. 2009. Nutritive value of corn silage in mixture with climbing beans, Animal Feed Science and Technology, 150:1-8.

Filya, I. 2001. Silage fermantation. Ataturk University Agricultural Dept. review, 32:87-93.

Ghanbari Bonjar, A, 2000. Intercropping field bean (Vicia faba) and wheat (Triticum aestivum L.) as a low input forage. PhD thesis. Wye College, University of London, UK.

Gordon, F.J., Dawson, L.E.R., Ferris, C.P., Steen, R.W.J, Kilpatrick, D.J., 1999. The influence of wilting and forage additive type on the energy utilization of grass silage by growing cattle. Animal Feed Science and Technology, 79:15-27.

Homan, E., Çelebi, Z.Ş., Erdoğan, S. 2021. Assessing yield and silage quality of intercropped corn and soybean in different planting patterns and in Mardin ecological condition. Yuzuncu Yil University Journal of Agricultural Sciences, 31 (4):799-806.

Javanmard, A., Mohammadi, Nasab, A.D., Javanshir, A., Moghaddam, M., Janmohammadi, H. 2009. Forage yield and quality in intercropping of maize with different legumes as double crpped. Journal of Food, Agriculture & Environment, 7 (1):163-166.

Kafkas, E., S. Paydaş. S. 2007. Evaluation and identification of volatile compounds of some promising strawberry genotypes using HS-SPME technique by GC/MS World Journal Agricultural Science, 3(2):191-195.

Karadeniz, E., Saruhan, V. 2021. Mardin ekolojik koşullarında farklı zamanlarda ekilen ikinci ürün silajlık mısır (Zea mays L.) çeşitlerinin silaj özelliklerinin araştırılması. ISPEC Tarım Bilimleri Dergisi, 5(2): 275-289.

Karadeniz, E., Eren, A., Saruhan, V. 2020. Mürdümük (Lathyrus sativus L.) ve tritikale (xTriticosecale Wittmack) karışımlarının silaj kalitesinin belirlenmesi. ISPEC Tarım Bilimleri Dergisi, 4(2)249-259

Koç, F., Özdüven, M.L., Yurtman, İ. Y. 1999. Effects of salt and microbial inoculants on the quality and aerobic stability of the maize-soybean silage. Journal of Animal Production, 39-40: 64-71.

Kung, J.L., Shaver, R.D., Grant, R.J., Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5):4020-4033.

Kung, L., Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage, 3(13):1-5.

Kraut, C.J., Tripathi, V., Chen, Y., Gatica, J., Volchinski, V., Sela, S., Weinberg, Z., E. Cytryn, E. 2016. Temporal and spatial assessment of microbial communities in commercial silages from bunker silos. Applied Microbiology and Biotechnology, 100: 6827-6835.

McDonald, P., Edwards, R.A., Greenalgh J.F.D. 1988. Animal Nutrition. 4th Ed. Longman Scientific and Technical, 1-400.

McDonald, P., Henderson, A.R., Heron, S.J.E. 1991. The Biochemistry of Silage. Second Edit ion. 340 p. Chalco mbe Publication..

McDonald, P., Edward, R.A. Greenhalgh, J.F.D. 1995. Animal nutrition, 5th Edn., Longman Scientific and Technical, England.

Muck, R.E., Moser, L.E., Pitt, R.E. 2003. Postharvest Factors Affecting Ensiling. In: Buxton, D.R., Muck, R.E., Harrison, J.H. (Eds.), Silage Science and Technology. Agron. Monogr. 42. ASA, CSSA, and SSSA, Madison, WI, pp. 251-304.

Mugwei, B.Z., Titterton, M., Maasdorp, B.V., Gandiya, A.F. 2000. Effect of mixed cereal-legume silages on milk production from lactating Holstein dairy cows (R7010). Sustaining Livestock in Challenging Dry Season Environments Strategies for Smallscale Livestock Farmers. Proceedings of the third workshop on Livestock Production Programme Projects, Matobo, Zimbabwe, 2000.

Naeini, S.Z., Khorvash, M., Rowghani, E., Bayat, A., Nikousefat, Z. 2014. Efects of urea and molasses supplementation on chemical composition, protein fractionation and fermentation characteristics of sweet sorghum and bagasse silages as alternative silage crop compared with maize silage in the arid areas. Res. Opin. Anim. Veterinary Sciences. 4: 343-352

Pitt, R.E. 1990. The probability of inoculant effectiveness in alfalfa silages. American Society of Agr. Engineering, 33:1771-1778.

Polat, C., F. Koç., Özdüven, M.L. 2005. Mısır silajında laktik asit bakteri ve laktik asit bakteri+enzim karışımı inokulantların fermantasyon ve toklularda ham besin maddelerinin sindirilme dereceleri üzerine etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 2 (1):13-22.

Seydoşoğlu, S., Saruhan, V. 2017. Mısır bitkisinde (Zea mays L.) ekim zamanı ve çeşidin silaj kalitesi üzerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(3):361-366.

Ward, R.T. 2000. Fermentation analysis: use and interpretation. In Tri-State Dairy Nutrition Conference (800, p. 117).

Whiter, A.G., Kung, J.L. 2001. The effect of a dry or liquid application of Lactobcillus plantarum MTD1 on the fermentation of alfalfa silage. Journal of Dairy Science, 84, 2195–2202.

Winters, A.L., Cockburn J.E., Dhanoa M.S., Merry, R.J. 2000. Effect of lactic acid bacteria in inoculant on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass. Journal of Applied Microbiology, 89:442-451.

Yurtsever, N., 1984. Deneysel İstatistik Metotları. Toprak ve Gübre Araştırma Enstitüsü Müd. Yay, Genel Yayın No: 56, Ankara.

Zhu, Y., Bai, C.S., Guo, X. S., Xue, Y.L., Ataku, K. 2011. Nutritive value of corn silage in mixture with vine peas, Animal Production Science, 51:1117-1122.

Yücel, C., Öktem, A., Gedük, Ş.A. 2021. GAP koşullarında yetiştirilen tatlı sorgumun posası ile yapılan silajın bazı fermantasyon özellikleri. MAS Journal of Applied Sciences, 6(4): 1064–1076.

Published

2022-12-03

How to Cite

YÜCEL, C., & AKKAYA, M. R. . (2022). Determination of Fermentation Properties of Silages Made at Different Mixing Ratios and Harvest Stage of Maize and Soybean Intercropping. ISPEC Journal of Agricultural Sciences, 6(4), 730–742. https://doi.org/10.5281/zenodo.7311489

Issue

Section

Articles