The Effects of Iron Oxide Nanoparticle (FeO-NP) Application on the Growth of Bean (Phaseolus vulgaris L.) Grown in Soilless Culture
Abstract views: 367 / PDF downloads: 152
DOI:
https://doi.org/10.5281/zenodo.10208300Keywords:
Iron, nanoparticle , nano fertilizer , Phaseolus vulgaris L. , deficiency, soilless cultureAbstract
In order to increase the Fe content of plants grown on iron-deficient soils and to reduce the health problems associated with Fe deficiency in humans and animals, there is a need for effective, cheap and environmentally friendly fertilizer production and fertilizer applications. In this study, iron oxide nanoparticles (FeO-NPs) synthesized by green synthesis method were characterized and applied in increasing doses (0, 2, 4, 6, 8 and 10 mg L-1) to Hoagland nutrient solution in which beans (Phaseolus vulgaris L.) were grown. The experiment was carried out in three replicates for 30 days in a climate chamber with controlled conditions (16/8 hours’ light/dark, 25/20 °C temperature and 60 % humidity, 10 Klux light intensity). Throughout the experiment, we observed morphological changes in bean plants grown in perlite culture, measured chlorophyll content in leaves before harvest, and determined dry weight of shoots and roots and concentrations of Fe, N, P, K, Ca, Cu, Mn, and Zn in shoots parts. The application of FeO-NP has exhibited a significant impact on the concentration of Fe in both the shoots and roots according to the results obtained (5 % and 1 %, respectively). The highest Fe concentration (92.11 mg kg-1) in the shoots was determined from the 10 mg L-1 application dose. With FeO- NP application, the dry weight of shoots as well as the concentrations of N, Mg, and Cu decreased in comparison to the control, while the concentrations of P, K, Ca, Zn, and Mn varied depending on the dosage of the application. Except for nitrogen, the study established that the macro and micronutrient concentrations in plant tissues were sufficient.
References
Abdelhameed, R.M., Abdelhameed, R.E., Kamel, H.A., 2019. Iron-based metal-organic-frameworks as fertilizers for hydroponically grown Phaseolus vulgaris. Materials Letters, 237: 72-79.
Afshar, R.M., Hadi, H., Pirzad, A., 2012. Effect of nano-iron foliar application on qualitative and quantitative characteristics of cowpea, under end season drought stress. International Research Journal of Applied and Basic Sciences, 3(8): 1709-1717.
Akhtar, N., Ilyas, N., Meraj, T.A., Pour-Aboughadareh, A., Sayyed, R.Z., Mashwani, Z.U.R., Poczai, P., 2022. Improvement of plant responses by nanobiofertilizer: a step towards sustainable agriculture. Nanomaterials, 12(6): 965.
Aktaş, M., 1994. Bitki besleme ve toprak verimliliği (2. baskı). Ankara Üniversitesi Ziraat Fakültesi Yayın No: 1361, Ankara.
Anonim, 2021. 2020 Yılı Bakliyat Sektör Raporu. Toprak Mahsulleri Ofisi Genel Müdürlüğü, (http://www.tmo.gov.tr.), (Erişim tarihi: 10.11.2021)
Anonim, 2022. Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu, (http://www.tuik.gov.tr), (Erişim tarihi: 01.03.2022).
Ardali, T., Maˈmani, L., Chorom, M., Moezzi, A., 2022. Improved iron use efficiency in tomato using organically coated iron oxide nanoparticles as efficient bioavailable Fe sources. Chemical and Biological Technologies in Agriculture, 9(1): 1-16.
Avila-Quezada, G.D., Ingle, A.P., Golińska, P., Rai, M., 2022. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnology Reviews, 11(1): 2123-2140.
Bastani, S., Hajiboland, R., Khatamian, M., Saket-Oskoui, M., 2018. Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition, 18(2): 524-541.
Bergmann, W., 1988. Ernaehrungsstörungen bei kulturpflanzen. New York: Gustav Fischer Verlag Stuttgart.
Cai, L., Cai, L., Jia, H., Liu, C., Wang, D., Sun, X., 2020. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. Journal of Hazardous Materials 393: 122415.
Chatzistathis, T., Fanourakis, D., Aliniaeifard, S., Kotsiras, A., Delis, C., Tsaniklidis, G., 2021. Leaf age-dependent effects of boron toxicity in two Cucumis melo varieties. Agronomy, 11(4): 759.
Çelik, H., Katkat, A.V., 2005. Bursa ili şeftali yetiştiriciliği yapılan tarım topraklarının potasyum durumu ve demir klorozu ile ilişkisi. Tarımda Potasyumun Yeri ve Önemi Çalıştayı, 3-4 Ekim, Eskişehir, s.74-84,
Çelim, S., Gülser. F., 2020. The changes caused by different ıron forms in growth of bean (Phaseoulus vulgaris L. Var Nana) under cadmium stress. ISPEC Journal of Agricultural Sciences, 4(4): 1006–1023.
De Souza, A., Govea-Alcaide, E., Masunaga, S.H., Fajardo-Rosabal, L., Effenberger, F., Rossi, L.M., Jardim, R.D.F., 2019. Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1(4): 1-8.
De Souza-Torres, A., Govea-Alcaide, E., Gómez-Padilla, E., Masunaga, S.H., Effenberger, F.B., Rossi, L.M., Jardim, R.F., 2021. Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere, 17: 100275.
Diatta, A.A., Thomason, W.E., Abaye, O., Thompson, L.T., Battaglia, M.L., Vaughan, L.J., Lo, M., Filho, J.F.D.C.L., 2020. Assessment of nitrogen fixation by Mungbean genotypes in different soil textures using 15N natural abundance method. Journal of Soil Science and Plant Nutrition, 20: 2230–2240.
Eren, A., 2020. The effect of biologically synthesized silver nanoparticles on germination of wheat (Triticum aestivum L.) seeds. ISPEC Journal of Agricultural Sciences, 4(2): 358–365.
Eren, A., Baran, M.F., 2019. Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays L.). Applied Ecology And Environmental Research, 17(2): 4097-4105.
Feng, Y., Kreslavski, V.D., Shmarev, A.N., Ivanov, A.A., Zharmukhamedov, S.K., Kosobryukhov, A., Yu, M., Allakhverdiev, S.I., Shabala, S., 2022. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants, 11(14): 1894 (1-15).
Feregrino-Perez, A.A., Magaña-López, E., Guzmán, C., Esquivel, K., 2018. A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Scientia Horticulturae, 238: 126-137
Ghafari, H., Razmjoo, J., 2015. Response of durum wheat to foliar application of varied sources and rates of iron fertilizers. Journal of Agricultural Science and Technology, 17: 321-331
Ghasemi-Fasaei, R., Ronaghi, A., 2008. Interaction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil. Journal of Plant Nutrition, 31(5): 839-848.
Ghasemi‐Fasaei, R., Ronaghi, A., Maftoun, M., Karimian, N.A., Soltanpour, P.N., 2005. Iron‐manganese interaction in chickpea as affected by foliar and soil application of iron in a calcareous soil. Communications in Soil Science and Plant Analysis, 36(13-14): 1717-1725.
Golshahi, S., Ahangar, A.G., Mir, N., Ghorbani, M., 2018. A comparison of the use of different sources of nanoscale iron particles on the concentration of micronutrients and plasma membrane stability in sorghum. Journal of soil science and plant nutrition, 18(1): 236-252.
Gui, X., Deng, Y., Rui, Y., Gao, B., Luo, W., Chen, S., Xing, B., 2015. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environmental Science and Pollution Research, 22(22): 17716-17723.
Güneş, A., Alpaslan, M., Inal, A., 1998. Critical nutrient concentrations and antagonistic and synergistic relationships among the nutrients of NFT‐grown young tomato plants. Journal of plant nutrition, 21(10): 2035-2047.
Güneş, A., İnal, A., Söylemezoğlu, G., 2013. Bitkilerde Nano-Fe’in demir beslenmesi üzerine etkisi. Ankara Üniversitesi. Ankara.
Heitholt, J.J., Sloan, J.J., MacKown, C.T., Cabrera, R.I., 2003. Soybean growth on calcareous soil as affected by three iron sources. Journal of Plant Nutrition, 26(4): 935-948.
Hewitt, E.J., Bolle-Jones, E.W., 1953. Studies in iron deficiency of Crops: II. The Interrelationships of Iron and Potassium in the Potato Plant. Journal of Horticultural Science, 28(3): 185-195.
Hoagland, D.R., Arnon, D.I., 1950. The water culture method for growing plants without soil. California Agriculture Experiment Station Circular, No: 347.
Hu, J., Guo, H., Li, J., Gan, Q., Wang, Y., Xing, B., 2017. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental pollution, 221: 199-208.
İdikut, L., Çiftçi, S., Uskutoğlu, D., Paksoy, M., Zulkadir, G., 2021. Kahramanmaraş koşullarında birinci ürün fasulye çeşitlerinin araştırılması. ISPEC Journal of Agricultural Sciences, 5(4): 984-990.
Jalali, M., Ghanati, F., Modarres‐Sanavi, A.M., Khoshgoftarmanesh, A. H., 2017. Physiological effects of repeated foliar application of magnetite nanoparticles on maize plants. Journal of Agronomy and Crop Science, 203(6): 593-602.
Jones, Jr, J.B., Wolf, B., Mills, H.A., 1991. Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc.
Jozedaemi, E., Golchin, A., Bibalani, G.H., 2014. The effect of soil and foliar fertilization with iron on yield and leaf chemical composition of four spotted bean cultivars in a calcareous soil. Greener Journal of Biological Sciences, 4(4): 116-127.
Kacar, B., 1995. Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. A.Ü. Ziraat Fak. Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No:3, Ankara, 704 s.
Kacar, B., 1972. Bitki ve Toprağın Kimyasal Analizleri. 2. Bitki Analizleri. Ankara Üniversitesi Ziraat fakülyesi yayınları: 453 Ank. Üniv. Basımevi Ankara.
Kacar, B., Katkat, V., 2009. Bitki Besleme. Nobel yayınları, Ankara.
Karaman, M.R., Brohi, A.R., Inal, A., Taban, S., 1999. Effect of iron and zinc applications on growth and on concentration of mineral nutrients of bean (Phaseolus vulgaris L.) grown in artificial siltation soils. Turkish Journal of Agriculture and Forestry, 23(2): 341-348.
Knijnenburg, J.T., Hilty, F.M., Oelofse, J., Buitendag, R., Zimmermann, M.B., Cakmak, I., Grobler, A.F., 2018. Nano-and pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa. Chemical and Biological Technologies in Agriculture, 5(1): 1-10.
Kobraee, S., 2016. Effect of zinc, iron and manganese fertilization on concentrations of these metals in the stem and leaves of soybean and on the chlorophyll content in leaves during the reproductive development stages. Journal of Elementology, 21(2): 395-412.
Mandal, D., 2021. Nanofertilizer and its application in horticulture. Journal of Applied Horticulture, 23(1).
Mohasseli, V., Farbood, F., Moradi, A., 2020. Antioxidant defense and metabolic responses of lemon balm (Melissa officinalis L.) to Fe-nano-particles under reduced irrigation regimes. Industrial Crops and Products, 149: 112338.
Moosavi, A.A., Ronaghi, A., 2010. Growth and iron-manganese relationships in dry bean as affected by foliar and soil applications of iron and manganese in a calcareous soil. Journal of Plant Nutrition, 33(9): 1353-1365.
Mortvedt, J.J., 1991. Correcting iron deficiencies in annual and perennial plants: Present technologies and future prospects. Plant and Soil, 130(1-2): 273-279.
Müftüoğlu, M.N., Türkmen, C., Çıkılı Y., 2012. Toprak ve Bitkide Verimlilik Analizleri. Kriter Yayınevi, İstanbul.
Predoi, D., Ghita, R.V., Iconaru, S.L., Cimpeanu, C.L., Raita, S.M., 2020. Application of nanotechnology solutions in plants fertilization. Urban Horticulture-Necessity of the Future, 9: 12-40
Rai, M., Ingle, A.P., 2021. Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know.
Rai, M., Ingle, A.P., Trzcińska-Wencel, J., Wypij, M., Bonde, S., Yadav, A., Kratošová, G., Golińska, P., 2021. Biogenic silver nanoparticles: What we know and what do we need to know? Nanomaterials, 11: 2901.
Ramadan, A.A., El-Bassiouny, H.M.S., Bakry, B.A., Abdallah, M.M.S., El-Enany, M.A.M., 2020. Growth, yield and biochemical changes of soybean plant in response to iron and magnesium oxide nanoparticles. Pakistan Journal of Biological Sciences, 23: 406-417.
Rana, K., Kumari, M., Mishra, A., Pudake, R.N., 2019. Engineered Nanoparticles for Increasing Micronutrient Use Efficiency. In: R.,Pudake, N., Chauhan, C., Kole, (Ed), Nanoscience for Sustainable Agriculture, Springer, Cham. pp. 25-49.
Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhu, S., 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7: 815.
Salata, O., 2004. Applications of nanoparticle in biology and medicine. Journal of Nanobiotechnology, 2(1): 3.
Santos, C.S., Roriz, M., Carvalho, S.M., Vasconcelos, M.W., 2015. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). Frontiers in Plant Science, 6: 325.
Seleiman, M.F., Almutairi, K.F., Alotaibi, M., Shami, A., Alhammad, B.A., Battaglia, M.L., 2021. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10(1): 2.
Seleiman, M.F., Santanen, A., Mäkelä, P., 2020. Recycling sludge on cropland as fertilizer-Advantages and risks. Resources, Conservation and Recycling, 155: 104647
Sheykhbaglou, R., Sedghi, M., Shishevan, M.T., Sharifi, R.S., 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2): 112-113.
Sohrabi, Y., Habibi, A., Mohammadi, K., Sohrabi, M., Heidari, G., Khalesro, S. and Khalvandi, M., 2012. Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. African Journal of Biotechnology, 11(40): 9599-9605.
Tripathi, D.K., Singh, S., Singh, S., Srivastava, P.K., Singh, V.P., Singh, S., Prasad, S.M., Singh, P.K., Dubey, N.K., Pandey, A.C., and Chauhan, D.K., 2017. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry 110: 167-177.
Varghese, R.J., Zikalala, N., Oluwafemi, O.S., 2020. Green synthesis protocol on metal oxide nanoparticles using plant extracts. In: Thomas, S., Sunny, A.T., Velayudhan, P. (Ed), Colloidal metal oxide nanoparticles, Elsevier, Chapter5, pp. 67-82.
Wang, Y., Chen, S., Deng, C., Shi, X., Cota-Ruiz, K., White, J.C., Gardea-Torresdey, J.L., 2021. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact, 23: 100336.
Yang, X., Alidoust, D., Wang, C., 2020. Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiologiae Plantarum, 42(8): 1-11.
Yaseen, R., Ahmed, A., Omer, A., Agha, M., Emam, T., 2020. Nano-fertilizers: Bio-fabrication, application and biosafety. Novel Research in Microbiology Journal, 4(4): 884-900.
Yetim, S., 2008. GAP Bölgesi Harran Ovası koşullarında azot ve demir gübrelemesinin ikinci ürün soya verimine ve bazı kalite kriterlerine etkisi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
Zuo, Y., Zhang, F., 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil, 339(1): 83-95.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ISPEC Journal of Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.