The Changes in Coleoptile Length and Root System Architecture During Wheat Polyploidization


Abstract views: 44 / PDF downloads: 46

Authors

DOI:

https://doi.org/10.5281/zenodo.10826058

Keywords:

Polyploidization, coleoptile length, root system architecture, wheat relatives

Abstract

Polyploidy, the doubling of chromosomes, has significantly shaped the evolution of flowering plants, including wheat. Yet, its impact on crucial traits like coleoptile length and root development remains unclear. This study compared these traits in wheat varieties with different ploidy levels, focusing on coleoptile length and root system diversity. Five genotypes/cultivars were used for each of einkorn (Triticum monococcum), durum (landraces and cultivars, Triticum durum and Triticum turgidum), and bread wheat (Triticum aestivum). The coleoptile length and root morphological measurement procedures were conducted using a blotter-paper germination protocol. The experiment was designed according to a completely randomized design   with three replications. The results revealed that domestication and selection pressures have influenced wheat's coleoptile length and certain root system characteristics. Interestingly, polyploidy appears to have a mixed bag of effects. It enhances root angle and seminal root numbers. However, total root length and coleoptile length are negatively affected. Importantly, the longest root remains unaffected. This divergence in root traits highlights the complex interplay between polyploidy and plant morphology. Understanding these trade-offs is crucial for plant breeders. To combine polyploidy's desirable robustness with optimal root systems, wild relatives and modern wheat varieties need to be strategically integrated into breeding programs. This will allow for the recovery of valuable traits that separated during wheat's evolutionary journey.

 

References

Akman, H., Yildirim, E., Bagci, S.A., 2023. Unrevalling phenotypic diversity of root system architecture in ancient wheat species versus modern wheat cultivars. Notulae Scientia Biologicae, 15(4): 11703.

Araki, H., Iijima, M., 2001. Deep rooting in winter wheat: rooting nodes of deep roots in two cultivars with deep and shallow root systems. Plant Production Science, 4(3): 215-219.

Araus, J., Bort, J., Steduto, P., Villegas, D., Royo, C., 2003. Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Annals of Applied Biology, 142(2): 129-141.

Araus, J.L., Slafer, G.A., Reynolds, M.P., Royo, C., 2002. Plant Breeding and Drought in C3 Cereals: What Should We Breed For? Annals of Botany, 89(7): 925-940.

Ayalew, H., Ma, X., Yan, G., 2015. Screening wheat (Triticum spp.) genotypes for root length under contrasting water regimes: potential sources of variability for drought resistance breeding. Journal of Agronomy and Crop Science, 201(3): 189-194.

Baloch, M.S., Nadim, M.A., Zubair, M., Awan, I.U., Khan, E.A., Ali, S., 2012. Evaluation of wheat under normal and late sowing conditions. Pakistan Journal of Botany, 44(5): 1727-1732.

Bektas, H., Hohn, C.E., Lukaszewski, A.J., Waines, J.G., 2023. On the possible trade-off between shoot and root biomass in wheat. Plants, 12(13): 2513.

Bektas, H., İnal, B., Sonkurt, M., Çığ, F., Bektas, Y., 2021. The effect of plant growth promoting rhizobacteria on root growth in bread wheat (Triticum aestivum L.). International Journal of Agricultural and Wildlife Sciences, 7(2): 239-246.

Bektas, H., Waines, J., 2020. Effect of grain size on the root system architecture of bread wheat (Triticum aestivum L.). Turkish Journal of Agricultural Research, 7(1): 78-84.

Borrell, A.K., Mullet, J.E., George-Jaeggli, B., van Oosterom, E.J., Hammer, G.L., Klein, P.E., Jordan, D.R., 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21): 6251-6263.

Brown, P.R., Singleton, G.R., Tann, C.R., Mock, I., 2003. Increasing sowing depth to reduce mouse damage to winter crops. Crop Protection, 22(4): 653-660.

Chochois, V., Vogel, J.P., Rebetzke, G.J., Watt, M., 2015. Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across Brachypodium distachyon accessions to exploit in breeding cereals for well-watered and drought environments. Plant Physiology, 168(3): 953-967.

Cochrane, J.A., Hoyle, G.L., Yates, C.J., Wood, J., Nicotra, A.B., 2015. Climate warming delays and decreases seedling emergence in a Mediterranean ecosystem. Oikos, 124(2): 150-160.

Condon, A.G., Richards, R., Rebetzke, G., Farquhar, G., 2004. Breeding for high water-use efficiency. Journal of Experimental Botany, 55(407): 2447-2460.

Coventry, D., Reeves, T., Brooke, H., Cann, D., 1993. Influence of genotype, sowing date, and seeding rate on wheat development and yield. Australian Journal of Experimental Agriculture, 33(6): 751-757.

Dubcovsky, J., Dvorak, J., 2007. Genome Plasticity a key factor in the success of polyploid wheat under domestication. Science, 316(5833): 1862-1866.

El Hafid, R., Smith, D.H., Karrou, M., Samir, K., 1998. Root and shoot growth, water use and water use efficiency of spring durum wheat under early-season drought. Agronomie, 18(3): 181-195.

Esau, K., 1965. Plant Anatomy. New York, NY, USA.

Figueroa-Bustos, V., Palta, J.A., Chen, Y., Siddique, K.H.M., 2018. Characterization of root and shoot traits in wheat cultivars with putative differences in root system size. Agronomy, 8(7): 109

Hakizimana, F., Haley, S.D., Turnipseed, E.B., 2000. Repeatability and genotype × environment ınteraction of coleoptile length measurements in winter wheat. Crop Science, 40(5): 1233-1237.

Harlan, J.R., 1992. Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison.

Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., Salamini, F., 1997. Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278(5341): 1312-1314.

Hohn, C.E., Bektas, H., 2020. Genetic mapping of quantitative trait loci (QTLs) associated with seminal root angle and number in three populations of bread wheat (Triticum aestivum L.) with common parents. Plant Molecular Biology Reporter, 38(4): 572-585.

Jame, Y., Cutforth, H., 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agricultural and Forest Meteorology, 124(3-4): 207-218.

Kirby, E., Appleyard, M., 1987. Development and structure of the wheat plant. In: Lupton, F.G.H. (Ed) Wheat Breeding. Wheat Breeding. Springer, Dordrecht, pp. 287-311.

Levy, A.A., Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell, 34(7): 2549-2567.

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., Ly, A., Gronau, Q.F., Šmíra, M., Epskamp, S., Matzke, D., Wild, A., Knight, P., Rouder, J. N., Morey, R. D., Wagenmakers, E.-J., 2019. JASP: graphical statistical software for common statistical designs. Journal of Statistical Software, 88(2): 1-17.

Maccaferri, M., El-Feki, W., Nazemi, G., Salvi, S., Cane, M.A., Colalongo, M.C., Stefanelli, S., Tuberosa, R., 2016. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of Experimental Botany, 67(4): 1161-1178.

Mahdi, L., Bell, C., Ryan, J., 1998. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depths in a semi-arid Mediterranean environment. Field Crops Research, 58(3): 187-196.

Manschadi, A.M., Hammer, G.L., Christopher, J.T., Devoil, P., 2008. Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1): 115-129.

Manske, G.G., Vlek, P.L., 2002. Root architecture–wheat as a model plant. Plant Roots: The Hidden Half, 3: 249-259.

Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F., Olsen, O.A., 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345(6194): 1250092.

Masterson, J., 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science, 264(5157): 421-424.

Md, F., Md. Abdul, H., Md. Ashraful, A., Barma, N.C.D., 2014. Screening wheat genotypes for coleoptile length: a trait for drought tolerance. American Journal of Agriculture and Forestry, 2(6): 237-245.

Miguel, M.A., Postma, J.A., Lynch, J.P., 2015. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant physiology, 167(4): 1430-1439.

Mohan, A., Schillinger, W.F., Gill, K. S., 2013. Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. PLoS One, 8(9): 73314.

Murphy, K., Balow, K., Lyon, S., Jones, S., 2008. Response to selection, combining ability and heritability of coleoptile length in winter wheat. Euphytica, 164(3): 709-718.

Nakhforoosh, A., Grausgruber, H., Kaul, H.-P., Bodner, G., 2014. Wheat root diversity and root functional characterization. Plant and Soil, 380(1): 211-229.

Nakhforoosh, A., Schuhwerk, D., Bodner, G., Kutschka, S., Grausgruber, H., 2012. Root characteristics of durum wheat and wheat relatives. In Proceedings of the 62nd Conference, Gumpenstein: Eigenverlag.

Olivoto, T., Lúcio, A.D.C., 2020. metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6): 783-789.

Özkan, H., Brandolini, A., Schäfer-Pregl, R., Salamini, F., 2002. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Molecular Biology and Evolution, 19(10): 1797-1801.

Ozkan, H., Levy, A.A., Feldman, M., 2001. Allopolyploidy-ınduced rapid genome evolution in the wheat (Aegilops–Triticum) group. The Plant Cell, 13(8): 1735-1747.

Rahman, M., Hossain, A., Hakim, M., Kabir, M., Shah, M., 2009. Performance of wheat genotypes under optimum and late sowing condition. International Journal of Sustainable Crop Production, 4(6): 34-39.

Rebetzke, G., Bruce, S., Kirkegaard, J., 2005. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant and Soil, 272(1): 87-100.

Rebetzke, G.J., Richards, R.A., Fettell, N.A., Long, M., Condon, A.G., Forrester, R.I., Botwright, T.L., 2007. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 100(1): 10-23.

Rebetzke, G.J., Richards, R.A., Sirault, X.R.R., Morrison, A.D., 2004. Genetic analysis of coleoptile length and diameter in wheat. Australian Journal of Agricultural Research, 55(7): 733-743.

Royo, C., Villegas, D., Rharrabti, Y., Blanco, R., Martos, V., García del Moral, L., 2006. Grain growth and yield formation of durum wheat grown at contrasting latitudes and water regimes in a Mediterranean environment. Cereal Research Communications, 34(2-3): 1021-1028.

RStudio, T., 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.

Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., Eliceiri, K.W., 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1): 529.

Sakamura, T., 1918. Kurze Mitteilung ueber die chromosomenzahlen und die verwandtschaftsverhältnisse der Triticum-arten. Shokubutsugaku Zasshi, 32(379): 150-153.

Sax, K., 1918. The behavior of the chromosomes in fertilization. Genetics, 3(4): 309.

Schillinger, W.F., Donaldson, E., Allan, R.E., Jones, S.S., 1998. Winter wheat seedling emergence from deep sowing depths. Agronomy Journal, 90(5): 582-586.

Sesiz, U., Alsaleh, A., Bektas, H., Topu, M., Özkan, H., 2024. Genome-wide association analysis of coleoptile length and interaction with plant height in durum wheat. Agronomy Journal, 116(1): 1-17.

Shackley, B., Anderson, W., 1995. Responses of wheat cultivars to time of sowing in the southern wheatbelt of Western Australia. Australian Journal of Experimental Agriculture, 35(5): 579-587.

Sinha, S.K., Rani, M., Kumar, A., Kumar, S., Venkatesh, K., Mandal, P.K., 2018. Natural variation in root system architecture in diverse wheat genotypes grown under different nitrate conditions and root growth media. Theoretical and Experimental Plant Physiology, 30(3): 223-234.

Soltis, D.E., Soltis, P.S., Rieseberg, L.H., 1993. Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences, 12(3): 243-273.

Team, J., 2019. JASP (Version 0.11.1)[Computer software].

Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9): 1097-1102.

Williams, P., 1993. The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian International Grains Institute, Winnipe.

Zadoks, J.C., Chang, T.T., Konzak, C.F., 1974. A decimal code for the growth stages of cereals. Weed Research, 14(6): 415-421.

Zohary, D., Hopf, M., 2000. Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press, Oxford .

Downloads

Published

2024-03-26

How to Cite

SESİZ, U. (2024). The Changes in Coleoptile Length and Root System Architecture During Wheat Polyploidization. ISPEC Journal of Agricultural Sciences, 8(1), 168–182. https://doi.org/10.5281/zenodo.10826058

Issue

Section

Articles