Determination of Volatile organic compounds in different parts of Hibiscus syriacus L. by SPME/GC-MS method

Abstract views: 15 / PDF downloads: 22




Hibiscus syriacus L.,, volatile organic compound, carvacrol, thymol, eucalyptol


Aromatic plants are plants with a wide range of traditional uses. One of the areas of medical use is their consumption for nutritional purposes. Aromatic plants have been used for thousands of years for their preservative and medicinal properties and for enhancing the aroma and flavor of foods. Hibiscus species are among the aromatic plants widely used in Türkiye. Studies have shown that Hibiscus species have anti-inflammatory, antibacterial, antifertility, antifungal, antioxidative, antihypertensive, and hypoglycaemic effects. The use of aromatic plants for therapeutic purposes for centuries has made their compounds the research subject. Gas chromatography-mass spectroscopy (GC-MS) was combined with solid phase microextraction (SPME) to determine volatile organic compounds. Twenty-nine volatile organic compounds were determined from different parts of H. syriacus L. species. The compounds with the highest content are carvacrol, thymol, eucalyptol, and linalool. The compounds with the highest ratios determined in the flower, seeds, leaves, and buds of Hibiscus syriacus L. were carvacrol (57.93 %), carvacrol (31.50 %), thymol (44.53 %) and carvacrol (54.54 %), respectively.


An, Q., Ren, J.N., Li, X., Fan, G., Qu, S.S., Song, Y., Pan, S.Y., 2021. Recent updates on bioactive properties of linalool. Food and Function, 12(21): 10370–10389.

Balkrishna, A., Mishra, S., Singh, A., Srivastava, D., Singh, S., Arya, V., 2022. Hibiscus syriacus L.: a critical review of medicinal utility and phytopharmacology with mechanistic approach. The Journal of Phytopharmacology, 11(3): 204-210.

Boukhatem, M.N., Sudha, T., Darwish, N.H. E., Chader, H., Belkadi, A., Rajabi, M., Mousa, S.A., 2020. A new eucalyptol-rich lavender (Lavandula stoechas L.) essential oil: Emerging potential for therapy against inflammation and cancer. Molecules, 25(16): 3671.

Can Baser, K.H., 2008. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14(29): 3106–3119.

Christaki, E., Giannenas, I., Bonos, E., Florou-Paneri, P., 2020. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed additives 2. capter. Aromatic Plants and Herbs in Animal Nutrition and Health . 19–34). Academic Pres, Elsevier.

Dinçer, C., Tongur, T., Erkaymaz, T., 2020. Farklı ekstraksiyon yöntemlerinin hibiscus ekstraktlarının kalite özellikleri üzerine etkisinin araştırılması. Gıda, 45(3): 409–420.

EPA, U. 2017. Volatile organic compounds' impact on indoor air quality. Recuperado de: Https://Www. Epa. Gov/Indoor-Air-Quality-Iaq/Volatile-Organiccompounds-Impact-Indoor-Air-Quality# Intro.

Fachini-Queiroz, F.C., Kummer, R., Estevao-Silva, C.F., Carvalho, M.D. de B., Cunha, J. M., Grespan, R., Cuman, R.K.N., 2012. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complementary and Alternative Medicine, 2012: 1-10.

Galan, D.M., Ezeudu, N.E., Garcia, J., Geronimo, C.A., Berry, N.M., Malcolm, B.J., 2020. Eucalyptol (1, 8-cineole): an underutilized ally in respiratory disorders. Journal of Essential Oil Research, 32(2): 103–110.

Gavaric, N., Mozina, S.S., Kladar, N., Bozin, B., 2015. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. Journal of Essential Oil Bearing Plants, 18(4): 1013–1021.

Kamatou, G.P.P., Viljoen, A.M., 2008. Linalool–A review of a biologically active compound of commercial importance. Natural Product Communications, 3(7): 1934578X0800300727.

Karadağ, M., Koyuncu, M., Atalar, M.N., Aras, A., 2021. SPME/GC-MS analysis of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale volatiles. Erzincan University Journal of Science and Technology, 14: 41–49.

Koyuncu, M., 2021. Otlu peynir üretiminde kullanılan alternatif bir aromatik bitki “Ornithogalum narbonense.” Journal of the Institute of Science and Technology, 11(Special Issue): 3482–3487.

Koyuncu, M., 2022. Siirt otlu peynirinin uçucu organik bileşik profili. ATA-Gıda Dergisi, 1(2): 1–5.

Lubbe, A., Verpoorte, R., 2011. Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial Crops and Products, 34(1): 785–801.

Memar, M.Y., Raei, P., Alizadeh, N., Aghdam, M.A., Kafil, H.S., 2017. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews and Research in Medical Microbiology, 28(2): 63–68.

Mitić-Ćulafić, D., Žegura, B., Nikolić, B., Vuković-Gačić, B., Knežević-Vukčević, J., Filipič, M., 2009. Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food and Chemical Toxicology, 47(1): 260–266.

Oliveira-Alves, S.C., Pereira, R.S., Pereira, A. B., Ferreira, A., Mecha, E., Silva, A.B., Bronze, M.R., 2020. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Research International, 131:109026.

Park, Y., Kwon, S., Jang, Y.L., Lee, D., Yang, S., Eo, H.J., Kwon, H., 2022. Nutritional composition and phytochemical screening in different parts of Hibiscus syriacus L. Food Science and Nutrition, 10(9): 3034–3042.

Sharifi‐Rad, M., Varoni, E.M., Iriti, M., Martorell, M., Setzer, W.N., del Mar Contreras, M., Tajbakhsh, M., 2018. Carvacrol and human health: A comprehensive review. Phytotherapy Research, 32(9): 1675–1687.

Suntres, Z.E., Coccimiglio, J., Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition, 55(3): 304–318.

Tetik, F., Civelek, S., Cakilcioglu, U., 2013. Traditional uses of some medicinal plants in Malatya (Turkey). Journal of Ethnopharmacology, 146(1): 331–346.

Yang, J.E., Park, S.W., Ngo, H.T.T., Seo, S.A., Go, E.B., Hwang, J.S., Yi, T.H., 2020. Skin-protective and anti-inflammatory effects of Hibiscus syriacus L. (Mugunghwa): A comparative study of five parts of the plant. Pharmacognosy Magazine, 16: 183-191.

Zhang, J., Sun, H., Chen, S., Zeng, L.I., Wang, T., 2017. Antifungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Botanical Studies, 58: 1–9.




How to Cite

KOYUNCU , M. ., KARADAĞ, M. ., BARAN, A., & GÜNEŞ, Z. (2024). Determination of Volatile organic compounds in different parts of Hibiscus syriacus L. by SPME/GC-MS method. ISPEC Journal of Agricultural Sciences, 8(2), 362–368.