Molecular Genetic Diversity of 12 Origanum vulgare subsp. hirtum Genotypes: EST-SSR Marker Analyses


Abstract views: 21 / PDF downloads: 14

Authors

DOI:

https://doi.org/10.5281/zenodo.12796491

Keywords:

EST-SSR, genetic diversity, marker, genotypes

Abstract

Conducting a genetic diversity study on Origanum vulgare using genetic markers is important to investigate the genetic variability and evaluation of the population structure of the species. Genetic diversity of Origanum vulgare has been determined with various genetic markers among different subspecies. Studies on the genetic diversity of its one of the most well known and widely grown subspecies, Origanum vulgare subsp. hirtum, have revealed high intraspecific genetic variability among different individuals within the species. In Origanum vulgare subsp. hirtum, employement of a molecular marker, Expressed Sequence Tagged – Simple Sequence Repeat (EST-SSR), allow the identification of distinct genetic profiles that can assist in cultivar identification and the comprehension of the genetic relationships within species. The primary aim of this study was to investigate the genetic diversity and population structure of 12 Origanum vulgare subsp. hirtum (Istanbul oregano) genotypes using nine EST-SSR markers. These EST-SSR markers (OR09, OR10, OR12, OR13, OR14, OR27, OR32, OR40 and OR44) were resulted total nine different alleles within all populations.  OR9 primer have shown one unique alleles, reflecting genetic distinctiveness within  the population. A total number of three clusters were determined in dendongram analysis (Neighbor Joining). The Origanum vulgare subsp. hirtum individuals investigated in this study exhibited low genetic diversity, with low to medium genetic variation both within and among the five populations (A, B, C, D and E). This limited diversity is might be due to the isolation  within and between populations and also small population size. Despite this, certain EST-SSR markers, specifically OR13 and OR40, have proven to be valuable markers for assessing genetic diversity. These markers can play a crucial role in further breeding programs for identifying new varieties within Origanum vulgare subsp. hirtum populations.

 

 

 

 

 

References

Alekseeva, M.V., Zagorcheva, T., Rusanova, M., Rusanov, K., Atanassov, I., 2021. Genetic and flower volatile diversity in natural populations of origanum vulgare subsp. hirtum (link) ietsw. in Bulgaria: toward the development of a core collection. Frontiers in Plant Science, 12:1-13.

Alekseeva, M., Rusanova, M., Rusanov, K., Atanassov, I., 2023. A Set of Highly Polymorphic Microsatellite Markers for Genetic Diversity Studies in the Genus Origanum. Plants, 12(4): 824-832.

Arabacı, O., Bayram, E., Tan, U., Sönmez, Ç., 2016. Determination of yield and quality properties of selected Istanbul oregano populations (Origanum vulgare subsp. hirtum (Link) Iestwaart). Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(Özel Sayı): 422-429.

Ayanoglu, F., Ergül, A., Arslan, M., 2006. Assessment of genetic diversity in Turkish oregano (Origanum onites L.) germplasm by AFLP analysis. Journal of Horticultural Science and Biotechnology, 81: 45–50.

Azizi, A., Ardalani, H., Honermeier, B., 2016. Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant Oregano. Herba Polonica, 62(2): 42-56.

Azizi, A., Wagner, C., Honermeier, B., Friedt, W., 2009. Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis. Plant Systematics and Evolution, 281: 151-160.

Doyle, J.J., Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus, 12:13–15.

El-Demerdash, E.S.S., Elsherbeny, E.A., Salama, Y.A.M., Ahmed, M.Z., 2019. Genetic diversity analysis of some Egyptian Origanum and Thymus species using AFLP markers. Journal of Genetic Engineering and Biotechnology, 17(1): 1-11.

Gao, L., Gao, C., 2016. Lowered diversity and increased inbreeding depression within peripheral populations of wild rice Oryza rufipogon. PLoS One, 11(3): e0150468.

Kocabaş Oğuz, I., 2021. Investigation of nitrate content of sage (Salvia fruticosa Mill) and oregano (Origanum onites) Plants. ISPEC Journal of Agricultural Sciences, 5(1): 21–26.

Koukoulitsa, C., Hadjipavlou‐Litina, D., Demopoulos, V.J., Skaltsa, H., 2006. Inhibitory effect of polar oregano extracts on aldose reductase and soybean lipoxygenase in vitro. Phytotherapy Research, 20(7): 605-606.

Lemos, S., Silveira, R., Buuron, S., Santos, R., Moro, S. 2019. Determining the Polymorphism Information Content of a Molecular Marker. Gene, 726: 144175.

Martino, L. D., Feo, V. D., Formisano, C., Mignola, E., Senatore, F., 2009. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of origanum vulgare ssp. hirtum (link) ietswaart growing wild in campania (Southern Italy). Molecules, 14(8): 2735-2746.

Mechergui, K., Jaouadi, W., Bekele, W., Khouja, M., Friedt, W., 2017. Genetic structure and differentiation among oregano [Origanum vulgare subsp. glandulosum (Desf.) Ietswaart] provenances from North Africa: bioinformatic approaches cause systematic bias. Genetic Resources and Crop Evolution, 64: 717-732.

Mertzanidis, D., Nakas, A., Assimopoulou, A., Kokkini, S., 2022. Origanum vulgare L. subsp. hirtum (Link) Ietsw. from Holy Mount, Chersonisos Athos (GR1230003): An oregano or a thyme plant?. Planta Medica, 88(15): 330-340.

Novak, J., Lukas, B., Bolzer, K., Grausgruber-Gröger, S., Degenhardt, J., 2008. Identification and characterization of simple sequence repeat markers from a glandular origanum vulgare expressed sequence tag. Molecular Ecology Resources, 8(3): 599-601.

Oakley, C., Lundemo, S., Ågren, J., Schemske, D., 2019. Heterosis is common and inbreeding depression absent in natural populations of Arabidopsis thaliana. Journal of Evolutionary Biology, 32: 592 - 603.

Perrier, X, Jacquemoud-Collet, JP. 2006. “DARwin software: Dissimilarity analysis and representation for windows.” Website: http://darwin. cirad. fr/darwin [Accessed 20.03.2024].

Pritchard, J. K., Stephens, M., & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945-959.

Torres, E., Iriondo, J., Perez, C. 2003. Genetic structure of an endangered plant, Antirrhinum microphyllum (Scrophulariaceae): allozyme and RAPD analysis. American Journal of Botany, 90(1): 85-92.

Waller, D.M., 2021. Addressing Darwin’s dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution (NY).

Van Looy, K., Jacquemyn, H., Breyne, P., Honnay, O., 2009. Effects of flood events on the genetic structure of riparian populations of the grassland plant Origanum vulgare. Biological conservation, 142(4): 870-878.

Zaghloul, M.S., Poschlod, P., Reisch, C., 2014. Genetic variation in Sinai's range-restricted plant taxa Hypericum sinaicum and Origanum syriacum subsp. sinaicum and its conservational implications. Plant Ecology and Evolution, 147(2): 187-201.

Downloads

Published

2024-09-01

How to Cite

TAN, U., & ARABACI, O. (2024). Molecular Genetic Diversity of 12 Origanum vulgare subsp. hirtum Genotypes: EST-SSR Marker Analyses. ISPEC Journal of Agricultural Sciences, 8(3), 780–788. https://doi.org/10.5281/zenodo.12796491

Issue

Section

Articles