The Effect of Fe3O4 Nanoparticles Applied at Different Doses on the Growth Characteristics of Strawberry (Fragaria × ananassa Duch, cv. ‘Albion’) Plants Under Salt Stress
Abstract views: 24 / PDF downloads: 15
DOI:
https://doi.org/10.5281/zenodo.13121183Keywords:
NaCl, iron (II, III) oxide, salinity, leaf relative water contentAbstract
Strawberry (Fragaria × ananassa Duch.) plants are an important agricultural crop due to their economic value and nutritional content. However, salinity stress is one of the significant environmental factors that adversely affect the yield and quality of strawberries. In recent years, advancements in nanotechnology have introduced new approaches in plant nutrition and stress management. This study aims to determine the effects of various doses of iron oxide (II, III) nanoparticles (NP0, NP0.01, NP0.1, NP1 mg L⁻¹) on the growth of strawberry plants grown under different salinity levels (T0, T30, and T60 mM NaCl). In the study, stem length (mm), root length (cm), number of leaves, fresh and dry weights of root and stem (g), leaf area (cm²), and leaf relative water content (RWC) (%) were determined. Although the values of the examined characteristics decreased as the salinity doses increased, it was found that the application of Fe₃O₄ NPs mitigated this adverse effect. In the study, statistically significant differences were determined between the salinity doses in terms of root length, leaf area, and fresh-dry weight characteristics, and between the Fe₃O₄ nanoparticles in terms of leaf area, plant dry weight, and root fresh weight. The interaction effect of salinity dose and Fe₃O₄ nanoparticles on stem length, leaf area, and plant dry weight was found to be statistically significant. The T0 treatment exhibited the highest values for all examined characteristics. The Fe₃O₄ nanoparticles showed different effects depending on the characteristics studied. The highest stem length, 29.37 mm, was found in the T0 × NP1 (1 mg L⁻¹) treatment, while the highest leaf area, 33.05 cm², was obtained from the T0 × NP0.01 treatment. The results indicate that iron nanoparticles could be a potential strategy to enhance the tolerance of strawberry plants to salt stress.
References
Abbaspour, H., Saekdı-Sar, S., Afsharı, H., Abdel-Wahhab, M.A., 2012. Tolerance of mycorrhiza ınfected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169: 704-709.
Abobatta, W.F., 2018. Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6): 99-102.
Alabdallah, N.M., Hasan, M.M., Hammami, I., Alghamdi, A.I., Alshehri, D., Alatawi, H.A., 2021. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants, 10(8): 1730.
Alkhatib, R., Alkhatib, B., Abdo, N., Al-Eitan, L., Creamer, R., 2019. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biology, 19: 253.
Al-Khayri, J.M., Rashmi, R., Ulhas, R., Sudheer, W.N., Banadka, A., Nagella, P., Aldaej, M.I., Rezk, A.A., Shehata, W.F., Almaghasla, I., 2023.
The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants, 12(2): 292
Anonim, 1995. Minitab reference manual. (Release 7.1). Minitab, state coll (minitab reference manual).
Aras, S., Arslan, E., Eșitken, A., 2015. Biochemical and physiological responses of lemon plant under salt stress. Paper presented at 2nd International Conference on Sustainable Agriculture and Environment, Conference Proceedings Book, 30 October, Konya, Turkey, s. 877-883.
Balestrasse, K.B., Tomaro, M.L., Batlle, A., Noriega, G.O., 2010. The role of 5- aminolevulinic acid in the response to cold stress in soybean plants, Phytochemistry, 71(17-18): 2038-2045.
Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N., 2006. Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica, 44(1): 151-154.
Bolat, I., Dıkılıtas, M., Ercıslı, S., Ikıncı, A., Tonkaz, T., 2014. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Hindawi Publishing Corporation, Scientific World Journal, 1: 769732.
Costa França, M.G., Pham Thi, A.T., Pimentel, C., Pereyra Rossiello, R.O., Zuily-Fodil, Y., Laffray, D., 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany, 43(3): 227-237.
Demiral, T., Türkan, İ., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Envionmental and Experimental Botany, 53: 247-257.
Efeoğlu, B., Ekmekçi, Y., Çiçek, N., 2009. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75: 34-42.
FAO, 2022. Food and Agriculture Organization of the United Nations, FAOSTAT. (http://www.fao.org/faostat/en /#data/QC), (Erişim Tarihi: 01.03.2024).
Feng, Y., Kreslavski, V.D., Shmarev, A.N., Ivanov, A.A., Zharmukhamedov, S.K., Kosobryukhov, A., Shabala, S., 2022. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) Plants. Plants, 11(14): 1894.
García-Legaz, M.F., López-Gómez, E., Beneyto, J.M., Navarro, A., SánchezBlanco, M.J., 2008. Physiological behaviour of loquat and anger rootstocks in relation to salinity and calcium addition. Journal of plant physiology, 165(10): 1049-1060.
Hasanov, M., 2023. Tuz stresine maruz bırakılan çilek bitkisinde farklı putresin dozlarının fizyolojik faaliyetler üzerine etkileri. Yüksek lisans tezi, Bolu Abant İzzet Baysal Üniversitesi Fen Bilimleri Enstitüsü, Bolu.
Hoffmann, J., Berni, R., Hausman, J. F., Guerriero, G., 2020. A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules, 10(9): 1284.
İpek, M., 2015. In vıtro şartlarda Garnem ve Myrobolan 29C anaçlarının kurak stresine karşı tepkilerinin belirlenmesi. Doktora tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
İpek, M., Pırlak, L., Eşitken, A., Dönmez, M.F., Şahin, F., 2009. Kireçli topraklarda yetiştirilen çilekte bitki büyümesini artıran bakterilerin (BBAB) verim ve gelişme üzerine etkileri. III. Ulusal Üzümsü Meyveler Sempozyumu, Kongre Bildiriler Kitabı, 10-12 Haziran, Kahramanmaraş, s. 73-77.
Karlidağ, H., Esitken, A., Yildirim, E., Donmez, M.F., Turan, M., 2010. Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. Journal of Plant Nutrition, 34(1): 34–45.
Karlidağ, H., Yildirim, E., Turan, M., 2009. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66(2): 180-187.
Kaya, C., Ak, B.E., Higgs, D., Murillo-Amador, B., 2002. Influence of foliar-applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Australian Journal of Experimental Agriculture, 42(5): 631-636.
Kluge, M., 1976. In Water and Plant Life: Problems and Modern Approaches (Ed: O.L. Lange, L. Kappen, E.D. Schulze). Carbon and nitrogen metabolism under water stress, Springer Berlin Heidelberg. pp. 243-252.
Koç, A., Balcı, G., Ertürk, Y., Keles, H., Bakoğlu, N., 2015. San Andreas çilek çeşidinde farklı tuz konsantrasyonlarında mikroorganizma uygulamalarının meyve kalitesi üzerine etkisi. Tarım Bilimleri Araştırma Dergisi, 8(2): 47-51.
Li, J., Ma, Y., Xie, Y., 2021. Stimulatory effect of Fe3O4 nanoparticles on the growth and yield of Pseudostellaria heterophylla via improved photosynthetic performance. HortScience, 56(7): 753-761.
Liu, C., Mao, B., Yuan, D., Chu, C., Duan, M., 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 10(1): 13-25.
Machado, R.M.A., Serralheiro, R.P., 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2): 30.
Mazzoni, L., Di Vittori, L., Balducci, F., Forbes-Hernández, T.Y., Giampieri, F., Battino, M., Mezzetti, B., Capocasa, F., 2020. Sensorial and nutritional quality of inter and intra—Specific strawberry genotypes selected in resilient conditions. Scientia Horticulturae, 261: 108945.
Moradbeygi, H., Jamei, R., Heidari, R., Darvishzadeh, R., 2020. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hortic., 272: 109537
Mozafari, A.A., Asl, A.G., Ghaderi, N., 2018. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants. 24(1): 25-35
Özkorkmaz, F., Öner, F., 2022. Potasyum nitratın (KNO3) tuz stresi altındaki mısır (Zea mays indentata L.) bitkisinde çimlenme özellikleri Üzerine Etkileri. ISPEC Journal of Agricultural Sciences, 6(4): 806-815.
Pırlak, L., Eşitken, A., 2004. Salinity effects on growth, proline and ion accumulation in strawberry plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 54(3): 189-192.
Rahman, S.M.L., Mackay, A.W., Quebedeaux, B., Nawata, E., Sakuratani, T., Mesbah Uddın, A.S.M., 2002. Superoxide dismutase activity, leaf water potential, relative water content, growth and yield of a drought-tolerant and a drought-sensitive tomato (Lycopersicon esculentum Mill.) cultivars. Subtropical Plant Science, 54: 16-22.
Saidimoradi, D., Ghaderi, N., Javadi, T., 2019. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae, 256: 108594.
Sanchez, F.J., Andres, E.F., Tenorio, J.L., Ayerbe, L., 2004. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress, Field Crops Research, 86: 81-90.
Sarkar, R.D., Singh, H.B., Kalita, M.C., 2021. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: A mini-review. Heliyon, 7(9): e08057
Shaw, D.V., Larson, K.D., 2006. Strawberry plant named “Albion”. Patent US PP16228 P3. The Regents of the University of California, Oakland, CA.
Tawfik, M.M., Mohamed, M.H., Sadak, M.S., Thalooth, A.T., 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45: 1-9.
Türemiş, N.F., Burğut, A., Sayğı, H., 2021. Organik tüplü çilek fidesi üretim yöntemlerinin geliştirilmesi. Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Enstitü Yayın No: 103.
Türkan, I., Bor, M., Õzdemir, F., Koca, H., 2005. Differential response of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223–231.
Waqas Mazhar, M., Ishtiaq, M., Maqbool, M., Akram, R., Shahid, A., Shokralla, S., Al-Ghobari, H., Alataway, A., Dewidar, A.Z., El-Sabrout, A.M., 2022. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy, 12(5): 982.
Yaghubi, K., Vafaee, Y., Ghaderi, N., Javadi, T., 2019. Potassium silicate ımproves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis, 50(12): 1439–1451.
Yaşar, F., Yıldırım, Ö., Üzal, Ö., 2020. Tuz stresi altındaki biber bitkisindeki kalsiyum uygulamalarının antioksidatif enzim aktivitelerine etkisinin araştırılması. ISPEC Journal of Agricultural Sciences, 4(2): 346-357.
Zhao, C., Zhang, H., Song, C., Zhu, J. K., Shabala, S., 2020. Mechanisms of plant responses and adaptation to soil salinity. The innovation, 1(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 ISPEC Journal of Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.