Isolation and Identification of Phosphate Solubilizing Bacteria (PSB) from the Rhizosphere of Thymus vulgaris L.


Abstract views: 74 / PDF downloads: 45

Authors

DOI:

https://doi.org/10.5281/zenodo.13589137

Keywords:

PGPR, Thymus vulgaris L., phosphate solubilizing bacteria, microbial fertilizer

Abstract

Phosphate-solubilizing bacteria dissolve insoluble form of phosphate in the soil with different mechanisms, converting them into a form that can be used, and replaced by chemical fertilizers providing beneficial use of a natural reserve. Although research on phosphate solubilizing bacteria has increased recently, research on the thyme rhizosphere is still limited. It is necessary to investigate different rhizospheric local bacteria that can solubilize phosphate and replace chemical fertilizers. 42 bacterial isolates were obtained from the rhizosphere of Thyme (Thymus vulgaris L.) in this study. Among these isolates, 13 phosphate-solubilizing bacterial isolates were selected which formed a transparent (halo) region around the colonies on Pikovskaya’s Agar (PKA) plates. Isolates were identified using the MALDI-TOF MS method. The morphological, biochemical and IAA production of these isolates as well as quantitative measurements of phosphate solubilization of the isolates in NBRIP broth medium was evaluated. The highest efficiency was noted from Bacillus pumilus PCB-6 with solubilization value of 326.8 ppm. This was followed by Acinetobacter calcoaceticus PCB-3 with solubilization value of 313.8 ppm and Pantoeae agglomerans PCB-4 with solubilization value of 307.4 ppm, respectively. Among the Phosphate solubilizing bacterial isolates, P solubilization index was defined as between 1.6 and 4.2 on PKA agar medium. Additionally, the highest IAA production, at 18.43 µg ml-1, was obtained from Pantoeae agglomerans PCB-4. This was followed by Bacillus pumilus PCB-6 with 17.40 µg ml-1 and Acinetobacter calcoaceticus PCB-3 with 16.71 µg ml-1. This study clearly shows that selected local isolates can be used as effective phosphate-based microbial fertilizers.

References

Abdel-Hamid, M.S., Fouda, A., El-Ela, H.K.A., El-Ghamry, A.A., Hassan, S.E.D., 2021. Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomolecular concepts, 12(1): 175-196.

Abdelmoteleb, A., Gonzalez-Mendoza, D., 2020. Isolation and identification of phosphate solubilizing Bacillus spp. from Tamarix ramosissima rhizosphere and their effect on growth of Phaseolus vulgaris under salinity stress. Geomicrobiology Journal, 37(10): 901-908.

Abdelshafy Mohamad, O.A., Ma, J.B., Liu, Y. H., Zhang, D., Hua, S., Bhute, S., Li, L. 2020. Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Frontiers in Plant Science, 11: 47.

Akçura, S., Çakmakçı, R., 2023. Bitki gelişimini teşvik edici bakterilerin şam çörek otunda (Nigella damascena L.) bazı bitkisel özellikler üzerine etkisi. ISPEC Journal of Agricultural Sciences, 7(3): 472-488.

Aktas, Y., Toğay, N., 2022. The Effects of iron and phosphorus applications on the yield and yield components ın chickpea (Cicer arietinum L.). ISPEC Journal of Agricultural Sciences, 6(2): 331-339.

Aliyat, F.Z., Maldani, M., El Guilli, M., Nassiri, L., Ibijbijen, J., 2022. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: calcium, iron, and aluminum phosphates. Microorganisms, 10(5): 980.

Alqarni, M.H., Salkini, A.A., Abujheisha, K.Y., Daghar, M.F., Al-khuraif, F.A., Abdel-Kader, M.S., 2022. Qualitative, quantitative and antimicrobial activity variations of the essential oils isolated from Thymus vulgaris and Micromeria fruticosa samples subjected to different drying conditions. Arabian Journal for Science and Engineering, 47(6): 6861-6867.

Amooaghaie, R., Golmohammadi, S., 2017. Effect of vermicompost on growth, essential oil, and health of Thymus vulgaris. Compost Science & Utilization, 25(3): 166-177.

Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J., Abbes, C., 2023. Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3): 783.

Arpanahi, A.A., Feizian, M., Mehdipourian, G., Khojasteh, D.N., 2020. Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology, 100: 103217.

Asra, R.H., Advinda, L., Anhar, A., 2024. The Role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture. Journal of Serambi Biology, 9(1): 1-7.

Audipudi, A.V., Kumar, N. P., Sudhir, A., 2012. Phosphate solubilizing microorganisms associated with Chollangi mangrove soil in east coast of India. International Journal of Scientific & Engineering Research, 3(11): 2229-5518.

Aula, N., Salsabila, S., Ramly, Z. A., Rose, S. Y., Surtiningsih, T., Nurhariyati, T., 2023. Exploration of phosphate solubilizing bacteria from mangrove soil of Lamongan, East Java, Indonesia. Biodiversitas. Journal of Biological Diversity, 24(2): 1272-1278.

Bai, Y., Zhou, X., Smith, D.L., 2003. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop science, 43(5):1774-1781.

Barton, C.J., 1948. Photometric analysis of phosphate rock. Analytical Chemistry, 20(11): 1068-1073.

Ben Zineb, A., Trabelsi, D., Ayachi, I., Barhoumi, F., Aroca, R., Mhamdi, R., 2020. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilization with rock phosphates. Geomicrobiology Journal, 37(1): 22-30.

Billah, M., Khan, M., Bano, A., Hassan, T.U., Munir, A., Gurmani, A.R., 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10): 904-916.

Blanco-Vargas, A., Rodríguez-Gacha, L. M., Sánchez-Castro, N., Garzón-Jaramillo, R., Pedroza-Camacho, L.D., Poutou-Piñales, R.A., Pedroza-Rodríguez, A.M., 2020. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, 6:(10).

Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Ma, Y., 2023. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 16(6): 468.

Clarke, P.H., Cowan, S.T., 1952. Biochemical methods for bacteriology. Microbiology, 6(1-2): 187-197.

Dip, D.P., Sannazzaro, A.I., Otondo, J., Pistorio, M., Estrella, M.J., 2024. Exploring phosphate solubilizing bacterial communities in rhizospheres of native and exotic forage grasses in alkaline-sodic soils of the flooding pampa. Current Microbiology, 81(7): 1-12.

Dipta, B., Kirti, S., Bhardwaj, S., Gupta, S., Kaushal, R., 2017. Phosphate solubilizing potential of Bacillus pumilus for the enhancement of Cauliflower (Brassica oleracea var. botrytis L.). Ecology, Environment and Conservation, 23: 1541-1548.

Genç, S., Soysal, M.İ., 2018. Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1): 18-27.

Gupta, R., Kumari, A., Sharma, S., Alzahrani, O. M., Noureldeen, A., Darwish, H., 2022. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1): 35-42.

Haghaninia, M., Rasouli, F., Javanmard, A., Mahdavinia, G., Azizi, S., Nicoletti, R., Caruso, G., 2024. Improvement of physiological features and essential oil content of Thymus vulgaris after soil amendment with chitosan nanoparticles under chromium toxicity. Horticulturae, 10(6): 659.

Haile, D., Tesfaye, B., Assefa, F., 2022. Phosphate solubilizing bacteria (PSB) isolation from tomato rhizospheres at koka district, Ethiopia. Turkish Journal of Agriculture - Food Science and Technology, 10: 2892-2898.

Isiya, S., 2024. Biofertilizer production using phosphate-solubilizing Pseudomonas spp. isolated from rhizosphere soil: towards indigenous biofertilizer for enhanced crop productivity in Katsina, Nigeria. Journal of Microbiology Research, 9(1): 123-133.

Jiang, H., Wang, T., Chi, X., Wang, M., Chen, N., Chen, M., Qi, P., 2020. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil. Geomicrobiology Journal, 37(2): 110-118.

Kaur, M., Vyas, P., Rahi, P., Sharma, S., 2022. Chlorpyrifos-and carbofuran-tolerant phosphate-solubilising Arthrobacter oxydans and Bacillus flexus improved growth and phosphorus content in potato in pesticide-amended soils. Potato Research, 65(2): 213-231.

Khatami, S.A., Kasraie, P., Oveysi, M., Tohidi Moghadam, H.R., Ghooshchi, F., 2023. Impacts of plant growth-promoting bacteria, compost and biodynamic compost preparations for alleviating the harmful effects of salinity on essential oil characteristics of lavender. Chemical and Biological Technologies in Agriculture, 10(1): 110.

King, E.J., 1932. The colorimetric determination of phosphorus. Biochemical Journal, 26(2): 292.

Kirui, C.K., Njeru, E.M., Runo, S., 2022. Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of eastern Kenya. Microbiology Insights, 15: 117.

Lacava, P.T., Machado, P.C., de Andrade, P.H.M., 2021. Phosphate solubilization by endophytes from the tropical plants. Endophytes: Mineral Nutrient Management, 3: 207-226.

Li, H.P., Han, Q.Q., Liu, Q.M., Gan, Y.N., Rensing, C., Rivera, W.L., Zhang, J.L., 2023. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 127375.

Linu, M.S., Asok, A.K., Thampi, M., Sreekumar, J., Jisha, M.S., 2019. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50(4): 444-457.

Ma, Q., He, S., Wang, X., Rengel, Z., Chen, L., Wang, X., Zhang, X., 2023. Isolation and characterization of phosphate-solubilizing bacterium Pantoea rhizosphaerae sp. nov. from Acer truncatum rhizosphere soil and its effect on Acer truncatum growth. Frontiers in Plant Science, 14:1218445.

Martínez-Hidalgo, P., Flores-Félix, J.D., Sánchez-Juanes, F., Rivas, R., Mateos, P.F., Santa Regina, I., Velázquez, E., 2021. Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasis on sporulating bacteria. Agronomy, 11(9): 1796.

Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S., 2015. Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4): 806-811.

Mehta, S., Nautiyal, C.S., 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43: 51-56.

Murgese, P., Santamaria, P., Leoni, B., Crecchio, C., 2020. Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere (Cucumis melo L.). Journal of Soil Science and Plant Nutrition, 20(2): 784-793.

Muthuri, C., Nyambura, N.C., Njeri, V.M., Tani, A., Wangari, M.C., 2012. Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology 6: 6414-6422.

Omar, F., 2022. Biofertilizer-biostimulant potential of endophyte and rhizospheric microorganisms for alfalfa tolerance to low phosphorus availability: Agrophysiological and biochemical aspects. PhD Thesis, Universite Sultan Moulay Slimane, Morocco

Panhwar, Q.A., Othman, R., Rahman, Z. A., Meon, S., Ismail, M. R. 2012. Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal of Biotechnology, 11(11): 2711-2719.

Pramanik, K., Mitra, S., Sarkar, A., Soren, T., Maiti, T.K., 2017. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environmental Science and Pollution Research, 24: 24419-24437.

Randive, V.S., Agnihotri, S.N., Bhagat, R.B., 2024. Screening and optimization of IAA production by pgpr ısolated from rhizosphere of a Pterocarpus marsupium and their effect on plant growth. Screening, 12(1).

Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C., 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1): 49-68.

Rfaki, A., Zennouhi, O., Aliyat, F. Z., Nassiri, L., Ibijbijen, J., 2020. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in moroccan wheat (Triticum aestivum L.). Geomicrobiology Journal, 37(3): 230-241.

Roychowdhury, R., Qaiser, T.F., Mukherjee, P., Roy, M., 2019. Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proceedings of the national academy of sciences, India Section B: Biological Sciences, 89: 353-360.

Sanchez-Gonzalez, M.E., Mora-Herrera, M.E., Wong-Villarreal, A., De La Portilla-López, N., Sanchez-Paz, L., Lugo, J., Yañez-Ocampo, G., 2022. Effect of pH and carbon source on phosphate solubilization by bacterial strains in Pikovskaya medium. Microorganisms, 11(1): 49.

Sarwar, M., Kremer, R.J., 1995. Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5): 282-285.

Selçuk, M.E., Çakıcı, H., 2022. Kireçli alkalin topraklarda mikrobiyal gübre (Bacillus spp) ve çiftlik gübresi uygulamalarının marul bitkisinin (Lactuca sativa L.) beslenme durumu ve verimi üzerine etkisi. ISPEC Journal of Agricultural Sciences, 6(3): 471-481.

Sharma, A., Dev, K., Sourirajan, A., Choudhary, M., 2021. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Journal of Genetic Engineering and Biotechnology, 19(1): 99.

Sivri, G.T., Öksüz, Ö., 2019. Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Journal of Tekirdag Agricultural Faculty, 16(2): 244-250.

Swain, M.R., Laxminarayana, K., Ray, R.C., 2012. Phosphorus solubilization by thermotolerant Bacillus subtilis isolated from cow dung microflora. Agricultural Research, 1: 273-279.

Valli, C., Melzi, A., Zecchin, S., Cavalca, L., 2023. Pseudomonas koreensis strain 69RS promotes rice growth and P bioavailability: Results from in vivo experiments.

Wang, Y., Li, P., Zhang, B., Meng, J., Gao, Y., He, X., Hu, X., 2020. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability. Bioresources, 15(2): 2560.

Downloads

Published

2024-12-01

How to Cite

GÜLER, M. (2024). Isolation and Identification of Phosphate Solubilizing Bacteria (PSB) from the Rhizosphere of Thymus vulgaris L. ISPEC Journal of Agricultural Sciences, 8(4), 978–991. https://doi.org/10.5281/zenodo.13589137

Issue

Section

Articles