The Effect of Salicylic Acid and Salt Stress on Seeder Development of Some Soya (Glycine max. L.) Cultivars
Abstract views: 384 / PDF downloads: 247
DOI:
https://doi.org/10.5281/zenodo.10750500Keywords:
Salicylic acid, soybean, salt stress, plant growthAbstract
In this study, soybean (Glycine max L.) plant, which has an important place in human nutrition, was evaluated as material. The aim of the research was to determine the tolerance level of soybean plant against salt stress as a result of salt and salicylic acid application at different doses to different soybean varieties and to observe the effect on seedling development. The study was organized in 2022 in the acclimatization room of the Department of Field Crops, Faculty of Agriculture, Şırnak University. The experiment was carried out according to the Random Plots Factorial Experimental Design with 3 replications. Three different soybean varieties (Arisoy, Asya and Gapsoy 16), salicylic acid dose (0, 0.5, 1.0 mM) and 4 different NaCl salt doses (0, 75, 150 and 225 mM) were used in the study. In the study, Soybean plant characteristics such as root length, stem length, root wet weight, stem wet weight, stem dry weight, stem dry weight, leaf area, leaf disc wet weight, leaf disc dry weight, plant height were examined. As a result of the research, it was determined that salt stress caused a decrease in root, stem dry and wet weights, stem length, root length and leaf area values. The negative effects of salt stress especially on plants were reduced by the effect of salicylic acid.
References
Ahmed, R., Howlader, M.H.K., Shila, A., Haque, M.A., 2017. Effect of salinity on germination and early seedling growth of maize, Progressive Agriculture, 28(1): 18-25.
Ashraf, M.Y., Wu, L., 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1): 17-42.
Baran, A., Doğan, M., 2014. Tuz stresi uygulanan soyada (Glycine max L.) salisilik asidin fizyolojik etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(1): 78-84.
Bilkis, A., Islam, M.R., Hafiz, M.H.R., Hasan, M.A., 2016. Effect of NaCl induced salinity on some physiological ve agronomic traits of wheat. Pakistan Journal of Botany, 48 (2): 455-460.
Bybordi, A., Tabatabaei, J., 2009. Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 71-76.
Cordovilla, M.P., Ocana, A., Ligero, F., Lluch, C., 1995. Salinity effect on growth analysis and nutrient composition in four grain legumes – Rhizobium symbiosis. Journal of Plant Nutrition, 18: 1595-1609.
Çulha, Ş., Çakırlar, H., 2011. Tuzluluğun bitkiler üzerine etkileri ve tuz toleransı mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11: 11-34.
Dajic, Z., 2006. Salt Stress, Physiology and Molecular Biology of Stress Tolerance in Plants, Dordrecht, The Netherlands.
Demirkol, G., Yılmaz, N., Önal Aşcı, Ö., 2019. Tuz stresinin yem bezelyesi (Pisum sativum ssp. arvense L.) seçilmiş genotipinde çimlenme ve fide gelişimi üzerine etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3): 354-359.
Ekiz, H., Bağcık, S.A., Yılmaz, A., Çağlayan N., Bozoğlu, S., 1995. Bazı arpa genotiplerinin tuzluluğa karşı toleranslarının ve toleransla ilgili seleksiyon kriterlerinin belirlenmesi. 3. Arpa Malt Sempozyumu, Kongre Bildiriler Kitabı, Eylül, Konya, s. 5-7.
Eren, S., 2012. Farklı tuzluluk düzeylerindeki sulama sularının, nanede (Mentha piperita L.) büyüme, gelişme ve verim parametrelerine etkisi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
Ertekin, İ., Yılmaz, Ş., Atak, M., Can, E., Çeliktaş, N., 2017. Tuz stresinin bazı yaygın fiğ (Vicia sativa L.) çeşitlerinin çimlenmesi üzerine etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 22(2): 10-18.
Essa, A.T., Al-Ani, D.H., 2001. Effect of salt stress on the performance of six soybean genotypes. Pakistan Journal of Biological Sciences, 4: 175-177.
Essa, T.A., 2002. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L.) cultivaris. Journal of Agronomy and Crop Science, 188(2): 65-140.
Farhoudi, R., Tafti, M.M., 2011. Effect of salt stress on seedlings growth and ions homoestasis of soybean (Glycine max L.) cultivars, Advances in Environmental Biology, 5(8): 2522–2526.
Wu, G.Q., Jiao, Q., Shui, Q.Z., 2015. Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.), Plant, Soil and Environment, 61(5): 220-226.
Gulzar, S., Khan, M., Ungar, I., 2001. Effect of salinity and temperature on the germination of Urochondra setulosa (Trin.) CE Hubbard. Seed Science and Technology, 29(1): 21-30.
Gürsoy, M., 2020. Effect of chitosan pretreatment on seedling growth and antioxidant enzyme activity of safflower (Carthamus tinctorius L.) cultivars under saline conditions. Applied Ecology and Environmental Research, 18(5): 6589-6603.
Gürsoy, M. 2023. An Overview of the effects of salt stress on plant development. 9th Internatıonal Zeugma Conference On Scıentıfıc Research.
Gürsoy, M., 2022a. Enhancing germination performance early seedling growth chlorophyll stability ındex and salt tolerance percentage of safflower (Carthamus tinctorius L.) seeds by aplication different plant growth regulators under salinity stress. Agrociencia, 56(1): 82-92.
Iyem, E., Yildirim, M., Kizilgeci, F., 2020. Comparative study on germination and seedling growth of wheat cultivars under salt stress regimes. International Journal of Agriculture Environment and Food Sciences, 4(4): 439-449.
Jamil, M., Rha, E.S., 2004. The effect of salinity (NaCl) on the germination and seedling growth of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Korean Journal of Plant Taxonomy, 7: 226–232.
Kaya, A., İnan, M., 2017. Tuz (NaCl) stresine maruz kalan reyhan (Ocimum basilicum L.) bitkisinde bazı morfolojik, fizyolojik ve biyokimyasal parametreler üzerine salisilik asidin etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3): 332-342.
Kaydan, D., Yağmur, M., 2006. Farklı salisilik asit dozları ve uygulama şekillerinin buğday (Triticum aestivum L.) ve mercimekte (Lens culinaris Medik.) verim ve verim öğeleri üzerine etkileri. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 12(3): 285-293.
Kizilgeci, F., Mokhtari, N.E.P., Hossain, A., 2020. Growth and physiological traits of five bread wheat (Triticum aestivum L.) genotypes are influenced by different levels of salinity and drought stress. Fresenius Environmental Bulletin, 29(9): 8592-8599.
Kondetti, P., Jawali, N., Apte, S.K., Shitole, M.G., 2012. Salt tolerance in Indian soybean (Glycine max L. Merill) varieties at germination and early seedling growth. Annals of Biological Research, 3(3): 1489–1498.
Maghsoudi, K., Arvin, M.J., 2010. Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiology, 2: 7-11.
Mikolajczyk, M., Awotunde, O.S., Muszynska, G., Klessig, D.F., Dobrowolska, G., 2000. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell, 12(1): 165-178.
Noble, C.L., Rogers, M.J.E., 1993. Response of temperate forage legumes to waterlogging and salinity. In: M. Pessarakli (ed.), Handbook of Plant and Crop Stress, Marcel Dekker, Inc., New York, pp. 473-496.
Omidi, M., Khandan-Mirkohi, A., Kaf, M., Zamani, Z., Ajdanian, L., Babaei, M., 2022. Biochemical and Molecular Responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology, 22: 373.
Özçınar, A.B., Arslan, H., Arslan, D., 2022. Soya (Glycine max. L. Merill) ‘da tuz uygulamasının fizyolojik ve biyokimyasal özellikler üzerine etkisinin incelenmesi. ISPEC Tarım Bilimleri Dergisi, 6(4): 762-776.
Phang, T.H., Shao, G., Lam, H.M., 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10): 1196-1212.
Raskin, I., 1992. Role of salicylic acid in plants. Annual Review of Plant Biology, 43(1): 439-463.
Sevgi, B., Leblebici, S., 2023. Tuz stresinin bitkiler üzerindeki etkileri ve geliştirilen tolerans mekanizmaları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11: 1498-1516.
Shannon, M.C., 1994. The potential for improved salt tolerance of the cultivated soybean. In: R. Ansari, T. J. Flowers, A.R. Azmi (eds), Current Developments in Salinity and Drought Tolerance of Plants, Plant Physiol. Div., Atomic Energy Agric. Res. Centre, Tando Jarm, Pakistan, pp. 103-113.
Toprak, T., Tunçtürk, R., 2018. Farklı aspir (Carthamus tinctorius L.) çeşitlerinin gelişim performansları üzerine tuz stresinin etkisi. Doğu Fen Bilimleri Dergisi, 1(1): 44-50.
Tunçtürk, M., Tunçtürk, R., Yıldırım, B., Çiftçi, V., 2011. Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10): 1827-1832.
Yakıt, S., Tuna, A.L., 2006.Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’nın etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1): 59-67.
Yasar, F., Kusvuran, S., Ellialtioglu, S., 2006. Determination of anti oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. Journal of Horticultural Science and Biotechnology, 81(4): 627–630.
Yılmaz, E., Tuna, A.L., Bürün, B., 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 7(1): 47–66.
Yildirim, M., Kizilgeci, F., Akinci, C., Albayrak, O., 2015. Response of durum wheat seedlings to salinity. Notulae Botanicae Horti Agrobotanici ClujNapoca, 43(1): 108-112.
Yousef, S.A., Al-Saadawi, I.S., 1997. Effect of salinity and nitrogen fertilization on osmotic potential and elements accumulation in four genotypes of broad bean Vicia faba L. Dirasat: Agricultural Sciences, 24: 395-401.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The copyright of the published article belongs to its author.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.