Investigation of Some invitro Biological Activities, Chemical and Pesticide Compositions of Extracts Obtained from Amygdalus communis (Almond) Fruit


Abstract views: 47 / PDF downloads: 28

Authors

DOI:

https://doi.org/10.5281/zenodo.12774905

Keywords:

Amygdalus communis, antimicrobial activity, enzyme inhibition activity, chemical composition, pesticide residue

Abstract

Amygdalus communis (A. communis) consists of high levels of protein and unsaturated fatty acids, making them useful in dietary nutrition where natural resources must be limited. In this study, the antioxidant, anticholinesterase, antimicrobial properties, amount of chemical components, heavy metal composition, and pesticide residue amounts of chloroform and methanol extracts obtained from almond fruit were investigated. It was determined that the highest total phenolic component and flavonoid content in A. communis fruit was in the chloroform extract, and the DPPH radical quenching activity of the chloroform extract was higher. It was determined that A. communis fruit chloroform and methanol extracts caused powerful inhibition on the growth of Escherichia coli and Staphylococcus aureus bacterial strains and Candida albicans yeast at low concentrations compared to standard antibiotics. Chemical component contents of A. communis fruit methanol and chloroform extracts were determined using LCMS/MS. It was determined that the major components in the methanol (Me-OH) extract were citric acid, chicoric acid, and 4-Hydroxybenzoic acid, respectively, and in the chloroform extract, 4-Hydroxybenzoic acid, p-coumaric acid, and chlorogenic acid. The inhibition effect of chloroform and methanol extracts obtained from A. communis fruit on the acetylcholinesterase enzyme was tested. Pesticide residue analysis was performed for the A. communis fruit sample using GC-MS and LCMS-MS. The presence of Deltamethrin residue was determined in the tested sample content. When the obtained data were evaluated, it should be expected that A. communis fruit, with its rich biochemical content and strong antibacterial, antioxidant, and anticholinesterase enzyme inhibition capacity, will have potential applications in the biomedical and food industries.

References

Abbas, M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M.S., Suleria, H.A.R., 2017. Natural polyphenols: An overview. International Journal of Food Properties, 20(8):1689-1699.

Augustyniak, A., Bartosz, G., Čipak, A., Duburs, G., Horáková, L.U., Łuczaj, W., Žarković, N., 2010. Natural and synthetic antioxidants: an updated overview. Free Radical Research, 44(10):1216-1262.

Ali, S.S., Ahsan, H., Zia, M.K., Siddiqui, T., Khan, F.H., 2020. Understanding oxidants and antioxidants: classical team with new players. Journal of Food Biochemistry, 44(3): e13145.

Beyhan, Ö., Aktaş, M., Yılmaz, N., Şimşek, N., Gerçekcioğlu, R., 2011. Determination of fatty acid composition in seed oils of some important almond (Prunus amygdalus L.) genotypes growing in Tokat province and Aegean region of Turkey. Journal of Medicinal Plants Research, 5(19): 4907– 4911.

Bravo, L., 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(1):317–333.

Brimson, J.M., Onlamoon, N., Tencomnao, T., Thitilertdecha, P., 2019. Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomedicine and Pharmacotherapy, 118(1):109319.

Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F., 2021 Plant Secondary Metabolites: An opportunity for circular economy. Molecules, 26(2):495-526.

De Morais, S.M., da Silva Lopes, F.F., Fontenele, G.A., da Silva, M.V.F., Fernandes, V.B., Alves, D.R., 2021. Total phenolic content and antioxidant and anticholinesterase activities of medicinal plants from the State’s Cocó Park (Fortaleza-CE, Brazil). Research, Society and Development, 10(5): e7510514493.

Dini, I., 2022. Contribution of nanoscience research in antioxidants delivery used in nutricosmetic sector. Antioxidants, 11(3):563.

Ellman, G.L., Courtney, K.D., Andres Jr, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2): 88-95.

Esfahlan, A.J., Jamei, R., Esfahlan, R.J., 2010. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chemistry, 120: 349-360.

Gazete, R., 2016. Türk Gıda Kodeksi Pestisitlerin Maksimum Kalıntı Limitleri Yönetmeliği. Resmi Gazete, 27.

Gülsoy, E., Balta, F., 2014. Aydın ili Yenipazar, Bozdoğan ve Karacasu ilçelerinden selekte edilen badem (Prunus amygdalus Batch) genotiplerinin protein, yağ ve yağ asidi bileşimlerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 4(1): 9-14.

Irtegün Kandemir, S., Aktepe, N., Baran, A., Baran, M.F., Atalar, M.N., Keskin, C., Khalilov, R., 2024. Determination of chemical composition and antioxidant, cytotoxic, antimicrobial, and enzyme inhibition activities of Rumex acetosella L. plant extract. Chemical Papers, 78:4583–4592.

Izquierdo-Vega, J.A., Arteaga-Badillo, D.A., Sánchez-Gutiérrez, M., Morales-González, J.A., Vargas-Mendoza, N., Gómez-Aldapa, C.A., Castro-Rosas, J., Delgado-Olivares, L., Madrigal-Bujaidar, E., Madrigal-Santillán, E., 2020. Organic acids from Roselle (Hibiscus sabdariffa L.)-A Brief review of its pharmacological effects. Biomedicines, 8(5):100-116.

Jara-Palacios, M.J., Gonçalves, S., Heredia, F.J., Hernanz, D., Romano, A., 2020. Extraction of antioxidants from winemaking byproducts: Effect of the solvent on phenolic composition, antioxidant and anti-cholinesterase activities, and electrochemical behaviour. Antioxidants, 9(8): 675-685.

Kamil, A., Chen, C.Y.O., 2012. Health benefits of almonds beyond cholesterol reduction. Journal of Agricultural and Food Chemistry, 60(27): 6694-6702.

Kavaz, A., Işık, M., Dikici, E., Yüksel, M., 2022. Anticholinergic, antioxidant, and antibacterial properties of Vitex agnus‐castus L. seed extract: assessment of its phenolic content by LC/MS/MS. Chemistry & Biodiversity, 19(10): e202200143.

Keskin, C., Baran, A., Baran, M. F., Hatipoğlu, A., Adican, M.T., Atalar, M.N., Eftekhari, A., 2022. Green synthesis, characterization of gold nanomaterials using Gundelia tournefortii leaf extract, and determination of their nanomedicinal (antibacterial, antifungal, and cytotoxic) potential. Journal of Nanomaterials, 2022(1):1-10.

Keskin, C., Özen, H.Ç., Toker, Z., Kızıl, G., Kızıl, M., 2018. Determination of in vitro antioxidant and antimicrobial properties of shoot and root extracts of Astragalus diphtherites Fenzl var. diphtherites and Astragalus gymnalopecias Rech. Fil. obtained by different solvents. Kahramanmaraş Sütçü İmam Üniversitesi Tarim ve Doga Dergisi, 21(2):157-166.

Kızıltaş, H., Bingol, Z., Gören, A.C., Kose, L.P., Durmaz, L., Topal, F., Gulcin, İ., 2021. LC-HRMS profiling and antidiabetic, anticholinergic, and antioxidant activities of aerial parts of kınkor (Ferulago stellata). Molecules, 26(9): 2469-2481.

Kodeksi, T.G., 2021. TGK Pestisitlerin maksimum kalıntı limitleri yönetmeliği. Resmi Gazete, 27.

Kuban-Jankowska, A., Sahu, K.K., Gorska, M., Tuszynski, J.A., Wozniak, M., 2016. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor. Oncotarget, 7(3): 2229–2238.

Lee, J., Scagel, C.F., 2013. Chicoric acid: chemistry, distribution, and production. Frontiers in Chemistry, 1(40): 1-17.

Lu, Q., Sun, Y., Ares, I., Anadón, A., Martínez, M., Martínez-Larrañaga, M.R., Martínez, M.A., 2019. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research, 170(1):260-281.

McDougall, B., King, P.J., Wu, B.W., Hostomsky, Z., Reinecke, M.G., Robinson Jr, W.E., 1998. Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrobial Agents and Chemotherapy, 42(1):140-146.

McGregor, D.B., 2000. Pesticide residues in food 2000: Deltamethrin. International Agency for Research on Cancer. France. 1(1):253-261.

Moreno-Montoro, M., Olalla-Herrera, M., Gimenez-Martinez, R., Navarro-Alarcon, M., Rufian-Henares, J.A., 2015. Phenolic compounds and antioxidant activity of Spanish commercial grape juices. Journal of Food Composition and Analysis, 38(1):19-26.

Mukherjee, P.K., Kumar, V., Mal, M., Houghton, P.J., 2007. Acetylcholinesterase inhibitors from plants. Phytomedicine, 14(4): 289-300.

Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., XiaoHui, Z., 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy, 97(1): 67-74.

Ndhlala, A. R., Işık, M., Kavaz-Yüksel, A., Dikici, E., 2024. Phenolic content analysis of two species belonging to the lamiaceae family: antioxidant, anticholinergic, and antibacterial activities. Molecules, 29(2): 480-492.

Peng, Y., Sun, Q., Park, Y., 2019. The bioactive effects of chicoric acid as a functional food ingredient. Journal of Medicinal Food, 22(7):645-652.

Pohanka, M., 2011. Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 155(3):219-230.

Poljsak, B., Kovač, V., Milisav, I., 2021. Antioxidants, Food Processing and Health. Antioxidants. 10(3):433-445.

Sarv, V., Venskutonis, P.R., Bhat, R., 2020. The Sorbus spp.-underutilised plants for foods and nutraceuticals: Review on polyphenolic phytochemicals and antioxidant potential. Antioxidants. 9(9): 813-836.

Taslimi, P., Gulçin, İ., 2018. Antioxidant and anticholinergic properties of olivetol. Journal of Food Biochemistry, 42(3):e12516.

Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., Vágvölgyi, C., 2020. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants, 9(2):165-186.

Tohma, H., Altay, A., Köksal, E., Gören, A.C., Gülçin, İ., 2019. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC–MS/MS. Journal of Food Measurement and Characterization, 13(1):1607-1619.

Türkan, F., Atalar, M.N., Aras, A., Gülçin, İ., Bursal, E., 2020. ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic Chemistry, 94(1):103333.

Varela-Martínez, D.A., González-Curbelo, M.Á., González-Sálamo, J., Hernández-Borges, J., 2020. Analysis of pesticides in cherimoya and gulupa minor tropical fruits using AOAC 2007.1 and ammonium formate QuEChERS versions: A comparative study. Microchemical Journal, 157(1):104950.

Vafadar, M., Osaloo, S.K., Attar, F., 2014. Molecular phylogeny of the genus Amygdalus (Rosaceae) based on nrDNA ITS and cpDNA trnS-trnG sequences. Turkish Journal of Botany. 38(3):439-452.

Wilkowska, A., Biziuk, M., 2011. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 125(3):803-812.

Yaşar, F., Üzal, Ö., Erez, M.E., Tuğa, H., Baytin Alacı, R., Kaymaz, Ö., Hassan, D.A., Yaşar, Ö., 2024a. Kuraklık stresi uygulanmış ve uygulanmamış domates bitkilerine farklı dozlarda mangan uygulamalarının bitki gelişimi üzerine etkisi. ISPEC Tarım Bilimleri Dergisi, 8(3): 105-115.

Yaşar, F., Üzal, Ö., Erez, M.E., Tuğa, H., Baytin Alacı, R., Kaymaz, Ö., Hassan, D.A., Yaşar, Ö., 2024b. The effect of different doses of manganese on plant development on tomato plants with and without drought stress. ISPEC Journal of Agricultural Sciences, 8(3):105-115.

Yüksel, A. K., Dikici, E., Yüksel, M., Işik, M., Tozoğlu, F., Köksal, E., 2021. Phytochemicals analysis and some bioactive properties of Erica manipuliflora Salisb.(EMS); antibacterial, antiradical and anti-lipid peroxidation. Iranian Journal of Pharmaceutical Research: IJPR, 20(4):422-434.

Zhang, N., Baran, A., Valioglu, F., Teng, L., Atalar, M.N., Keskin, C., Beilerli, A., 2023. Antioxidant, AChE inhibitory, and anticancer effects of Verbascum thapsus extract. Cellular and Molecular Biology. 69(14): 211-217.

Published

2024-09-01

How to Cite

KESKİN, C. ., ARAS, İbrahim O. ., BARAN, A., BARAN, M. F., ÇETİK YILDIZ, S., & TARHAN, R. . (2024). Investigation of Some invitro Biological Activities, Chemical and Pesticide Compositions of Extracts Obtained from Amygdalus communis (Almond) Fruit. ISPEC Journal of Agricultural Sciences, 8(3), 722–736. https://doi.org/10.5281/zenodo.12774905

Issue

Section

Articles