Determination of the Behavioral Effect of Ultrasonic Sounds at Different Frequencies and Waveforms on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae)


Abstract views: 526 / PDF downloads: 387

Authors

  • Cemil Yetkin GAP Tarımsal Araştırma Enstitüsü Müdürlüğü
  • Emine ÇIKMAN Harran Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü

DOI:

https://doi.org/10.46291/ISPECJASvol5iss2pp267-274

Keywords:

Ephestia kuehniella, ultrasonic, sound, pyralidae, Mill Mouth

Abstract

The biotechnical struggle against pests aims to reduce the damage of insects below the economic damage threshold with the help of all sound, odor and visual factors that negatively affect the insect population. One of the biotechnical control methods is the use of sound waves against insects. Moths including Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), detect the sounds emitted by predator bats at 20-200 kHz with their tympanal organs. During flight, a pyralid moth which detects ultrasonic sound, immediately moves away from the source of sound with a sudden maneuver or remains motionless by throwing itself to the ground. Based on this behavior of pyralid moths, sine and square waveforms between 40-50 kHz (21 different frequences) were applied on E. kuehniella, in a choice test system in laboratory conditions. Ultrasonic waves were applied to E. kuehniella adults from a distance of 50 cm, who were in the choice tunnel. Motionless or escape behavior of the moth when exposed to ultrasonic sounds, was investigated. As a result of the research, it was determined that E.kuehniella, which were released in the choice tunnel, remained motionless both in the non-sound control application and against all applied frequency and waveforms.

References

Ahmad, A., Subramanyam, B. & Zurek, L. (2006). Responses of mosquitoes and German cockroaches to ultrasound emitted from a random ultrasonic generating device. Entomologia Experimentalis et Applicata, 123(1), 25-33.

Aflitto N., & Degomez T. (2014). Sonic pest repellents. College of Agriculture, University of Arizona (Tucson, AZ).

Anderson, J. & Mankin, R. W. (2003). Trapping female medflies (Ceratitis capitata) by broadcast of male calling song. First International Conference On Acoustic Communication By Animals, (pp 3-4), 27-30 July 2003 Maryland.

Alexander, R. (1957). Sound production and associated behavior in insects. The Ohio Journal of Science. 57(2), 101-113.

Anonymous (1981). Noise Effects Handbooks: A Desk Reference to Health and Welfare Effects of Noise. Environmental Protection Agency, (p.125), Washington D.C. (US).

Conner, W.E. (1999). Un chant d’appel amoureux: acoustic communication in moths. The Journal of experimental Biology, 202 (Pt 13), 1711–1723.

Dikilitaş, M., Balak, V., &Karakaş, S. (2016). Ses dalgalarının tarımsal ürünlerin muhafazası ve bitki gelişimi üzerine etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 20(4), 338-355.

Dikilitaş, M , Balak, V , Şimşek, E , Karakaş, S . (2018). Ses Dalgaları ile Mikroorganizmaların Kontrolü. Harran Tarım ve Gıda Bilimleri Dergisi, 22 (3) , 431-444. DOI: 10.29050/harranziraat.345131

Hansen, J. D. (2001). Ultrasound Treatments to Control Surface Pests of Fruit, HortTechnology horttech, 11(2), 186-188.

Huang, F., Subramanyam, B. & Taylor, R. (2003). Ultrasound affects spermatophore transfer, larval numbers, and larval weight of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 39(4), 413-422.

Huang, F. & Subramanyam, B. (2004). Behavioral and reproductive effects of ultrasound on the ındian meal moth, Plodia İnterpunctella. Entomologia Experimentalis et Applicata, 113(3), 157-164.

Huang, F. &Subramanyam, B. (2006). Lack of repellency of three commercial ultrasonic devices to the German cockroach (Blattodea: Blattellidae). Insect Science, 13, 61-66.

Greenfield, M.D. & Weber, T. (2000). Evolution of ultrasonic signalling in wax moths: discrimination of ultrasonic mating calls from bat echolocation signals and the exploitation of an antipredator receiver bias by sexual advertisement. Ethology Ecology & Evolution, 12 (3): 259-279.

Koehler, P.G, Patterson, R.S. & Webb, J.J. (1986). Efficacy of ultrasound for German Cockroach (Orthoptera: Blattellidae) and Oriental Rat Flea (Siphonoptera: Pulicidae) control. Journal of Economic Entomology, 79(4), 1027-1031.

Mamay, M., Mutlu, Ç. (2019). Optimizing container size and rearing density for rapid and economic mass rearing of Oenopia conglobata (Linnaeus, 1758) (Coleoptera: Coccinellidae). Turkish Journal of Entomology, 43 (4), 395-408. DOI: 10.16970/entoted.562724

Njoroge, A. W., Mankin, R. W., Smith, B. W. & Baributsa, D. (2018). oxygen consumption and acoustic activity of adult Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) during hermetic storage. Insects, 9(2), 45.

Njoroge A., Affognon H., Richter U., Hensel O., Rohde B., Chen D. &Mankin R. (2019). Acoustic, pitfall trap, and visual surveys of stored product ınsect pests in kenyan warehouses. Insects, 10(4), Insects. 2019; 10(4), 105. https://doi.org/10.3390/insects10040105

Reinhold, K., Greenfield, M. D., Jang, Y. & Broce, A. (1998). Energetic cost of sexual attractiveness: ultrasonic advertisement in wax moths. Animal Behaviour, 55(4), 905-913.

Pollack, G. S. & Imaizumi K. (1999). Neural analysis of sound frequency in insects. Bioessays 21(4), 295-303.

Potamitis I., Ganchev T. & Kontodimas D. (2009). On automatic bioacoustic detection of pests: the cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J. Econ. Entomol. 102(4), 1681-1690.

Rees, D. 2007. Insects of stored grain. Australia, Collingwood VIC 3066: Csiro publishing 150 Oxford Street (PO Box 1139).

Salahi, S.,S., Rajabpour A., Rasekh A. & Farkhari M. (2016). Repellency and some biological effects of different ultrasonic waves on mediterranean flour moth, Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal Of Stored Products Research 69, 14-21.

Takacs, S.,Mistal, C. & Gries, G. (2003). Communication ecology of webbing clothes moth: attractiveness and characterization of male-produced sonic aggreration signals. J.Appl. Ent., 127, 127-133.

Trematerra P. & Pavan G. (1995). Ultrasound production in the courtship-behaivar of Ephestia cautella (Walk.), E. kuehniella Z. and Plodia interpuctella (Hb.) (Lepidopthera: Pyralidae). J. Stored Prod. Res., 31 (1), 43-48.

Uluca, M. (2016). Blatta lateralis Walker (Blattodea: Blattidae) üzerine ultrasonik zararlı kovucuların performansının ölçülmesi. (Yayımlanmamış Yüksek Lisans Tezi). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta.

Yücel, A. (1982). Güneydoğu Anadolu Bölgesinde ambarlanmış buğdaylarda ambar böceklerinin neden olduğu ürün kayıpları. Hasat Öncesi, Hasat Sonrası Ürün Kayıpları Seminer Bildirileri. T.C. T.O.B., Ziraat İşleri Genel Müdürlüğü, Merkez İkmal Müdürlüğü Basımevi, Ankara, 473-480.

Zha Y., Chen J., Jin Z., Wang C. & Lei C. (2013). Effects of ultrasound on the fecundity and development of the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Journal of Agricultural and Urban Entomology, 29(1), 93-98.

Published

2021-06-02

How to Cite

Yetkin, C., & Emine ÇIKMAN. (2021). Determination of the Behavioral Effect of Ultrasonic Sounds at Different Frequencies and Waveforms on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). ISPEC Journal of Agricultural Sciences, 5(2), 267–274. https://doi.org/10.46291/ISPECJASvol5iss2pp267-274

Issue

Section

Articles