Determination of the Effects of Different Nitrogen and Phosphorus Applications On Leaf Area of Echinacea (Echinacea purpurea L.)


Abstract views: 232 / PDF downloads: 153

Authors

DOI:

https://doi.org/10.5281/zenodo.7717862

Keywords:

Echinacea, leaf area, nitrogen, phosphorus

Abstract

This study was conducted to determine the changes in the leaf area, particularly in the drug part used for medical purposes, of Echinacea purpurea plant caused by different nitrogen (0, 10, 20, and 30 kg/da) and phosphorus (0, 5, 10, and 15 kg/da) applications. The change in leaf area was determined to be between 23.01-62.95 cm2. Based on the measurements obtained from the leaves in the study, a simple and highly accurate model was developed by measuring the length and width of the leaf on the plant without the need for expensive equipment, without damaging the leaves, or harvesting them for future Echinacea studies. The developed model was modeled as Leaf area = (-0.06367) + (0.007245 x L) + (0.02498 x AVW) - (5.913e-05 x L²) + [0.9975 x (L x AVW)] (L: length and AVW: average width). The model was found to have a high R-squared value (R² = 0.9993).

References

Adam, K., 2002. Echinacea Asan Alternative Crop. Horticulturel Technical Note. Cat Agriculture Specialist. Attra-National Sustainable Agriculture Information Service PO Box, 3657.

Caliskan, O., Odabas, M.S., 2011. Ekinezya (Echinacea sp.) türleri, genel özellikleri ve yetiştiriciliği. Anadolu Tarım Bilim Dergisi, 26(3):265-270

Carter, S., Becker, C., Lily, B., 2007. Perennials. Timber Press, Inc., Oregon, USA.

Cristofori, V., Fallovo, C., Mendoza-De, G.E., Rivera, C.M., Bignami, C., Rouphael, Y., 2008. Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L.f) based on leaf length and width measurement. European Journal of Horticultural Science, 73: 216–221.

Demarty, J., Chevallier, F., Friend, A.D., Viovy, N., Piao, S., Ciais, P., 2007. Assimilation of global modıs leaf area index retrievals within a terrestrial biosphere model. Geophysical Research Letters, 34(15): L15402.

Doğan, A., Uyak, C., Gazioğlu Şensoy, R.İ., Keskin, N., 2018. Asma yaprak alanının belirlenmesinde farklı iki yöntemin karşılaştırılması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(3):289-294.

Fallovo, C., Cristofori, V., Mendoza-De G. E., Rivera, C.M., Rea, R.., Fanasca, S., Bignami, C., Sassine, Y., Rouphael, Y., 2008. Leaf area estimation modelforsmallfruitsfrom linear measurements. Horticultural Science, 43: 2263–2267.

Hobbs, C., 1994. Echinacea:Aliterature review, HerbalGram (AmericanBotanicalCouncil). 30: 33–48.

Kandiannan, K., Parthasarathy, U., Krishnamurthy, K.S., Thankamani, C.K., Srinivasan, V., 2009. Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and Journal of Ornamental Plants, Volume 6, Number 4: 245-251, December, 2016 251 width. Scientia Horticulturae, 120: 532–537.

Kumar, R., 2009. Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Scientia Horticulturae, 122: 142–145.

Kurt, D., Odabas, M.S., 2020. Modeling of the effects of nitrogen doses on agronomic characteristics and leaf area of hypericum pruinatum L., International Journal of Agricultural and Life Sciences, 6(2):288-292

Kvet, J., Marshall, J.K., 1971. Assessment of leaf area and other assimilating plant surfaces. p. 517–555.

Montero, F.J., de Juan, J.A., Cuesta, A., Brasa, A., 2000. Nondestructive methods to estimate leaf area in Vitis vinifera L. HortScience 35: 696–698.

Nesmith, D.S., 1992. Estimating summer squash leaf area non-destructively. Horticultural Science, 27 (1): 27- 77.

Odabas, M.S., Gulumser, A., 2005. Developing a software for determining total leaf area on faba bean (Vicia faba L.) Journal of Tekirdağ Agriculture Faculty, 2(3):268-272

Odabas, M.S., Ergun, E., Oner, F., 2013. Artificial neural network approach ort he prediction of corn (Zea mays L.) leaf area. Bulgarian Journal of Agricultural Science, 3:54-57

Omidbaigi, R., 2002. Study of cultivation and adaptability of purple coneflower (Echinaceae purpurea) in the North of Tehran. JWSS-Isfahan University of Technology, 6(2), 231-241.

Oner, F., Odabas, M.S., Sezer, I., Odabas, F., 2011. Leaf area prediction for corn (Zea mays L.) cultivars with multiregression analysis. Photosynthetica, 49 (4): 637-640

Robbins, N.S., Pharr, D.M., 1987. Leaf area prediction models for cucumber from linear measurements. Horticultural Science, 22 (6): 1264–1266.

Rouphael, Y., Colla, G., Fanasca, S., Karam, F., 2007. Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetic, 45: 306–308.

Rouphael, Y., Mouneimne, A.H., Ismail, A., Mendoza-De, G.E., Rivera, C.M., Colla, G., 2010. Modeling individual leaf area of rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica, 48 (1): 9-15.

Rouphael, Y., Rivera, C.M., Cardarelli, M., Fanasca, S., Colla, G., 2006. Leaf area estimation from linear measurements in zucchini plants of different ages. Journal of Horticultural Science and Biotechnology, 81: 238–241.

Smith, R.J., Kliewer, W.M., 1984. Estimation of Thompson seedless grapevine leaf area. American Journal of Enology and Viticulture, 35: 16-22.

Spann, T.M., Heerema, R.J., 2010. A simple method for non-destructive estimation of total shoot leaf area in tree fruit crops. Scientia Horticulturae, 125: 528-533.

Stoppani, M.I., Wolf, R., Francescangeli, N., Martı, H.R., 2003. A nondestructive and rapid method for estimating leaf area of broccoli. Advances in Horticultural Science, 17: 173–175

Tsialtas, J.T., Maslaris, N., 2005. Leaf area estimation in a sugar beet cultivar by linear models. Photosynthetica, 43 (3): 477-479.

Published

2023-03-26

How to Cite

KARACA ÖNER, E., ARSLANOĞLU, Şahane F., & İSKENDER, R. . (2023). Determination of the Effects of Different Nitrogen and Phosphorus Applications On Leaf Area of Echinacea (Echinacea purpurea L.). ISPEC Journal of Agricultural Sciences, 7(1), 53–59. https://doi.org/10.5281/zenodo.7717862

Issue

Section

Articles