Determination the Effects of Different Concentrations of Salt (NaCl) Added to the Nutrient Medium under in vitro Conditions on the Development of Tomato (Solanum lycopersicum L.)


Abstract views: 62 / PDF downloads: 24

Authors

DOI:

https://doi.org/10.5281/zenodo.11123176

Keywords:

Abiotic stress, salinity, in vitro, tomato

Abstract

In this study, the effects of sodium chloride (NaCl) at different concentrations (0, 50, 100, 150 and 200 mM) added to the nutrient medium under in vitro conditions on tomato (Solanum lycopersicum L.) development were determined. Murashige and Skoog (MS) was used as the basic nutrient medium. During the study; germination rate (%), average germination time (days), salt tolerance index (%), actual water content (%), stem fresh weight (g), stem dry weight (g), root fresh weight (g), root dry weight (g), stem length (mm), root length (mm) and visual scale evaluation parameters of tomato plants were examined. Among the nutrient media, the germination rate was found as the highest in DA (0 mM NaCl) (80.00%), DB (50 mM NaCl) (76.00%) and DC (100 mM NaCl) (75.60%) media. The shortest average germination time was determined in DA medium (3.19 days). The lowest salt tolerance index was obtained from DE (200 mM NaCl) (81.25%) medium. Considering the study results, it was determined that plant development slowed down as the NaCl dose increased.

References

Abdel-Farid, I.B., Marghany, M.R., Rowezek, M.M., Sheded, M.G., 2020. Effect of salinity stress on growth and metabolomicprofiling of Cucumis sativus and Solanum lycopersicum. Plants, 9(11): 1626.

Ahmad, P., Hakeem, K.R., Kumar, A., Ashraf, M., Akram, N.A., 2012. Salt-induced changes in photosyntheticactivity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). African Journal of Biotechnology, 11(11): 2694–2703.

Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., Sharma, S., 2010. Roles of enzymatic and non-enzymaticantioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30: 161–175.

Alay, F., Birol, M., Demir, E., Çankaya, N., 2024. Kamış topunun (Festuca arundinacea Schreb.) tuzluluk stresine (NaCl) karşı büyüme tepkisinin araştırılması. ISPEC Tarım Bilimleri Dergisi, 8(1): 57–71.

Aydın, İ., Atıcı, Ö., 2015. Tuz stresinin bazı kültür bitkilerinde çimlenme ve fide gelişimi üzerine etkileri. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 3(2): 1–15.

Baktemur, G., 2023. In Vitro koşullarda farklı konsantrasyonlarda sodyum klorür içeren besin ortamlarının kabak (Cucurbita pepo L.) bitkisi gelişimine etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1): 873–882.

Bhatkar, N.S., Shirkole, S.S., Mujumdar, A.S., Thorat, B.N., 2021. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Drying Technology, 39: 1–25.

Cobb, J.N., Declerck, G., Greenberg, A., Clark, R., McCouch, S., 2013. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126: 867–887.

Daşgan, H.Y., Aktas, H., Abak, K., Çakmak, İ., 2002. Determination of screening techniques to salinity tolerance in tomatoes and ınvestigation of genotype responses. Plant Science, 163: 695–703.

Fallahi, H.R., Fadaeian, G., Gholami, M., Daneshkhah, O., Hosseini, F.S., Aghhavani-Shajari, M., Samadzadeh, A., 2015. Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breeding and Seed Science, 71: 97–108.

FAO, 2022. Food and Agriculture Organization of the United Nations, FAOSTAT. (http://www.fao.org/faostat/en/#data/QC), (Erişim Tarihi: 10.02.2024).

Güldüren, Ş., Elkoca, E., 2012. Kuzey Doğu Anadolu Bölgesi ve Çoruh Vadisi’nden toplanan bazı fasulye (Phaseolus vulgaris L.) genotiplerinin çimlenme döneminde tuza toleransları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(1): 29-41.

Kara, E., Baktemur, G., 2023b. Bahçe teresinin (Lepidium sativum L.) in vitro koşullarda farklı konsantrasyonlarda NaCl içeren besin ortamlarında gelişim düzeyinin belirlenmesi. Sivas II. International Conference on Scientific and Innovation Research, Kongre Bildiriler Kitabı, 15-17 Eylül, Sivas, s. 1191-1200.

Kara, E., Baktemur, G., 2023a. Farklı Tuz Seviyelerinin In Vitro Koşullarda Havuç (Daucus carota L.) Bitkisi Üzerine Etkilerinin Belirlenmesi. Akdenız 10th International Conference on Applied Sciences, Kongre Bildiriler Kitabı, 02-05 Kasım, s. 280–286.

Kaur, G., Kumar, S., Nayyar, H., Upadhyaya, H.D., 2008. Cold stress injury during the pod-fillingphase in chickpea (Cicer arietinum L.) effects on quantitative and qualitative components of seeds. Journal of Agronomy and Crop Science, 194: 457-464.

Kaya, M.D., Okçu, G., Atak, M., Çıkılı, Y., Kolsarıcı, Ö., 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24(4): 291-295.

Keleş, B., 2019. İn Vitro kültür koşulları ve tuzluluk (NaCl) stresi altında çimlendirilen aspir (Carthamus tinctorius L.) bitkisinde meydana gelen morfolojik, fizyolojik ve biyokimyasal değişimler. Yüksek Lisans Tezi, Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.

Kereçin, G., Öztürk, F., 2024. Salisilik asit ve tuz stresi uygulamalarının bazı soya (Glycine max. L.) çeşitlerinin fide gelişimi üzerine etkisi. ISPEC Journal of Agricultural Sciences, 8(1): 25-35.

Khayatnezhad, M., Gholamin, R., 2011. Effects of salt stress levels on five maize (Zea mays L.) cultivars at germination stage. African Journal of Biotechnology, 10: 12909–12915.

Kıran, S., Kuşvuran, Ş., Özkay, F., Özgün, Ö., Sönmez, K., Özbek, H., Ellialtıoğlu, Ş.Ş., 2015. Bazı patlıcan anaçlarının tuzluluk stresi koşullarındaki gelişmelerinin karşılaştırılması. Tarım Bilimleri Araştırma Dergisi, 8(1): 20-30.

Loganayaki, K., Tamizhmathi, S., Brinda, D., Gayathri, S., Mary, M.C., Mohanlal, V.A., 2020. In vitro evaluation of tomato (Lycopersicon esculentum Mill.), chilli (Capsicum annum L.), cucumber (Cucumis sativus L.) and bhendi (Abelmoschus esculentus L.) for salinity stress. International Journal of Chemical Studies, 8(2): 2364-2367.

Mahmood, M.S., Pırlak, L., 2023. Aronya (Aronia melanocarpa) fidanlarının in vitro ve in vivo şartlarda tuz stresine toleranslarının belirlenmesi. International Conference on Scientific and Innovative Studies 1: 86–91.

Mantri, N., Patade, V., Penna, S., Ford, R., Pang, E., 2012. Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (Eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York.

Munns, R., 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167: 645–663.

Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology, 15: 473–497.

Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22: 4056–4075.

Pérez-Jiménez, M., Pérez-Tornero, O., 2020. In vitro plant evaluation trial: Reliability test of salinity assays in citrus plants. Plants, 9(10): E1352.

Pérez-Tornero, O., Tallón, C.I., Porras, I., Navarro, J.M., 2009. Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. Journal of Plant Physiology, 166(17): 1923-1933.

Pravitha, M., Dipika Agrahar, M., Ajesh Kumar, V., 2024. Recent developments in tomato drying techniques: A comprehensive review. Journal of Food Process Engineering, 47(2): e14550.

Rahman, M., Soomro, U.A., Haq, M.Z., Gul, S., 2008. Effects of Nacl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences, 4: 398–403.

Ruggiero, A., Punzo, P., Landi, S., Costa, A., Van Ooosten, M.J., Grillo, S., 2017. Improving plant water use efficiency through molecular genetics. Horticulturae 3(2): 31.

Seth, R., 2018. Assessment of salinity tolerance in tomato cultivars grown in Maharashtra, India. Annals of Plant Sciences, 7(5): 2259.

Thakur, P., Kumar, S., Malik, J.A., Berger, J.D., Nayyar, H., 2010. Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany, 67: 429–443.

Thorpe, T., 2007. History of plant tissue culture. Methods in Molecular Biology, 37: 169–180.

Vives-Peris, V., Gómez-Cadenas, A., Pérez-Clemente, R.M., 2017. Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Reports, 36: 1971–1984.

Vorasoot, N., Songsri, P., Akkasaeng, C., Jogloy, S., Patanothai, A., 2003. Effect of water stress on yield and agronomic characters of peanut (Arachis hypogaea L.). Songklanakarin Journal of Science and Technology, 25: 283–288.

Zhu, J.K., 2001. Plant salt tolerance. Trends in Plant Science, 6: 66–71.

Published

2024-06-07

How to Cite

KARA, E., TAŞKIN, H., & BAKTEMUR, G. (2024). Determination the Effects of Different Concentrations of Salt (NaCl) Added to the Nutrient Medium under in vitro Conditions on the Development of Tomato (Solanum lycopersicum L.). ISPEC Journal of Agricultural Sciences, 8(2), 301–309. https://doi.org/10.5281/zenodo.11123176

Issue

Section

Articles